论文标题

高斯一元复合矩阵多项式的极限经验光谱分布

The limit empirical spectral distribution of Gaussian monic complex matrix polynomials

论文作者

Barbarino, Giovanni, Noferini, Vanni

论文摘要

我们定义了具有可逆领导系数的随机矩阵多项式的经验光谱分布(ESD),并将其研究用于复杂的$ n \ times n $ n $ ghussian monic矩阵$ k $的多项式。在两种不同的情况下,我们获得了ESD几乎确定限制的确切公式:(1)$ n \ rightarrow \ infty $带有$ k $常数和(2)$ k \ rightarrow \ rightarrow \ infty \ infty $ at $ n $ constant。我们方法的主要工具是Tao,Vu和Krishnapur的替代原理。在此过程中,我们还发展了潜在独立利益的一些辅助结果:我们略微扩展了Bürgisser和Cucker的结果,该结果是针对非零平均矩阵的伪内膜标准的尾巴结合的,并且我们对某些结构性随机矩阵的奇异值获得了几个估计值。

We define the empirical spectral distribution (ESD) of a random matrix polynomial with invertible leading coefficient, and we study it for complex $n \times n$ Gaussian monic matrix polynomials of degree $k$. We obtain exact formulae for the almost sure limit of the ESD in two distinct scenarios: (1) $n \rightarrow \infty$ with $k$ constant and (2) $k \rightarrow \infty$ with $n$ constant. The main tool for our approach is the replacement principle by Tao, Vu and Krishnapur. Along the way, we also develop some auxiliary results of potential independent interest: we slightly extend a result by Bürgisser and Cucker on the tail bound for the norm of the pseudoinverse of a non-zero mean matrix, and we obtain several estimates on the singular values of certain structured random matrices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源