论文标题

原始空间

Primigraph spaces

论文作者

Norman, Manuel

论文摘要

在本文中,我们介绍了原始空间,它们是拓扑空间,以及$ c^*$ - 代数的捆绑,可以被某些Prim A覆盖,即,通过一些$ C^*$ - 代数的原始光谱与Jacobson的原始光谱与Jacobson拓扑结构,以及与jacobson拓扑结构以及对它们的连续功能的连续功能。从某种意义上说,这个概念与方案和完美的空间相似。我们的第一个主要结果是,每个拓扑空间都产生了原始空间。得益于定理4.1,这将暗示着原始空间也构成了一种新型的拓扑不变。

In this paper we introduce primigraph spaces, which are topological spaces together with a sheaf of $C^*$-algebras that can be covered by some Prim A's, that is, by the primitive spectra of some $C^*$-algebras endowed with Jacobson topology and together with the sheaf of bounded continuous functions on them. This notion is analoguous, in some sense, to the ones of schemes and perfectoid spaces. Our first main result here is that every topological space gives rise to a primigraph space; this will imply, thanks to Theorem 4.1, that primigraph spaces also constitute a new kind of topological invariant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源