论文标题

没有最大的适当操作员理想

There is no largest proper operator ideal

论文作者

Ferenczi, Valentin

论文摘要

如果其包含的$ id_x $的唯一运算符具有有限的等级,则操作员理想是正确的。我们回答了Pietsch(1979)提出的一个问题,证明没有最大的适当操作员理想。我们的证明是基于Aiena-González(2000)对建筑的扩展,该建筑是通过对$ x_s $的Powers of Powers of Powers of Powers of powers的代数分析的Gowers-Maurey Shift Space $ X_S $(1997)的基础操作员。我们还证明,当一般$ \ mathbb {c} $ - 线性操作员且仅当它们适合这些操作员被视为真实时:例如,这是对严格奇异,严格的,严格的cosing骨或不必要的操作员的理想,回答González-Herrra(2007)的问题。这为我们提供了一个将Pietsch问题的负面答案扩展到真实环境的框架。

An operator ideal is proper if the only operators of the form $Id_X$ it contains have finite rank. We answer a question posed by Pietsch (1979) by proving that there is no largest proper operator ideal. Our proof is based on an extension of the construction by Aiena-González (2000), of an improjective but essential operator on Gowers-Maurey's shift space $X_S$ (1997), through a new analysis of the algebra of operators on powers of $X_S$. We also prove that certain properties hold for general $\mathbb{C}$-linear operators if and only if they hold for these operators seen as real: for example this holds for the ideals of strictly singular, strictly cosingular, or inessential operators, answering a question of González-Herrera (2007). This gives us a frame to extend the negative answer to the question of Pietsch to the real setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源