论文标题
来自$ \ textit {tess} $数据的卷积神经网络分析的年轻星星的耀斑统计数据
Flare Statistics for Young Stars from a Convolutional Neural Network Analysis of $\textit{TESS}$ Data
论文作者
论文摘要
全天空的光度序列任务允许监视数千名Young($ t _ {\ rm age} <800 $ MYR),以了解恒星活动的演变。在这里,我们开发了一个卷积神经网络(CNN),$ \ texttt {stella} $,经过专门培训,可以在$ \ textit {thransiting exoplanet Survey Satellite} $($ \ textit {textit {tess} $)中找到耀斑。我们将网络应用于3200个年轻恒星,以评估耀斑速率与年龄和光谱类型的函数。 CNN需要几秒钟的时间才能在单光曲线上识别耀斑。我们还测量了1500个目标的旋转周期,发现所有振幅的耀斑都存在于所有点阶段,这表明整个表面上的高点覆盖率。此外,星星的耀斑速率和振幅下降$ t _ {\ rm age}> 50 $ MYR在所有温度上$ t _ {\ rm eff} \ geq 4000 $ k,而星星则从$ 2300 \ leq t _ {\ rm eff} <rm eff} <4000 $ k显示跨800 myr的进化。 $ t _ {\ rm eff} \ leq 4000 $ k的星星在所有年龄段都显示出更高的耀斑速率和振幅。我们研究了高耀斑速率对年轻行星光蒸发大气质量损失的影响。在耀斑的情况下,行星在前1个回旋中损失了4-7%的气氛。 $ \ texttt {stella} $是在Github和Pypi上托管的开源Python工具套件。
All-sky photometric time-series missions have allowed for the monitoring of thousands of young ($t_{\rm age} < 800$Myr) to understand the evolution of stellar activity. Here we developed a convolutional neural network (CNN), $\texttt{stella}$, specifically trained to find flares in $\textit{Transiting Exoplanet Survey Satellite}$ ($\textit{TESS}$) short-cadence data. We applied the network to 3200 young stars to evaluate flare rates as a function of age and spectral type. The CNN takes a few seconds to identify flares on a single light curve. We also measured rotation periods for 1500 of our targets and find that flares of all amplitudes are present across all spot phases, suggesting high spot coverage across the entire surface. Additionally, flare rates and amplitudes decrease for stars $t_{\rm age} > 50$Myr across all temperatures $T_{\rm eff} \geq 4000$K, while stars from $2300 \leq T_{\rm eff} < 4000$K show no evolution across 800 Myr. Stars of $T_{\rm eff} \leq 4000$K also show higher flare rates and amplitudes across all ages. We investigate the effects of high flare rates on photoevaporative atmospheric mass loss for young planets. In the presence of flares, planets lose 4-7% more atmosphere over the first 1 Gyr. $\texttt{stella}$ is an open-source Python tool-kit hosted on GitHub and PyPI.