论文标题
在分形域的平面拉梅 - 纳维尔系统上
On the plane Lamé-Navier system in fractal domains
论文作者
论文摘要
本文致力于研究平面线性弹性理论(二维Lamé-Navier系统)方程的基本系统。我们根据凯奇·里曼(Cauchy-Riemann)的操作员以压缩形式重写它们,它使我们能够为此系统解决一种利益问题。在此处介绍的广义Teodorescu操作员为获得非常广泛的区域(包括具有分形边界的区域)的明确解决方案提供了一种手段。
This paper is devoted to study a fundamental system of equations in plane Linear Elasticity Theory, the two-dimensional Lamé-Navier system. We rewrite them in a compressed form in terms of the Cauchy-Riemann operators and it allows us to solve a kind of Riemann problem for this system. A generalized Teodorescu operator, to be introduced here, provides the means for obtaining the explicit solution of this problem for a very wide classes of regions, including those with a fractal boundary.