论文标题

关于所有周期的拉姆齐的大小与路径

On the size Ramsey number of all cycles versus a path

论文作者

Bal, Deepak, Schudrich, Ely

论文摘要

我们说$ g \ to(\ Mathcal {c},p_n)$如果$ g-e(f)$包含$ n $ -VERTEX PATH $ P_N $对于任何分散的森林$ f \ subset g $。大小ramsey编号$ \ hat {r}(\ Mathcal {c},p_n)$是最小的整数$ m $,因此存在一个图$ g $,带有$ m $ edges,$ g \ to $ g \ to(\ nathcal {c},p_n)$。 Dudek,Khoeini和Prałat证明,对于足够大的$ n $,$ 2.0036n \ le \ hat {r}(\ Mathcal {c},p_n)\ le 31n $。在本说明中,我们将下限和上限提高到$ 2.066n \ le \ hat {r}(\ Mathcal {C},p_n),p_n)\ le 5.25n+o(1)。$我们的上界的构造与dudek,khoeini和prałat的构造完全不同。我们还有一个计算机辅助证明上限$ \ hat {r}(\ mathcal {c},p_n)\ le \ frac {75} {19} {19} n +o(1)<3.947n $。

We say $G\to (\mathcal{C}, P_n)$ if $G-E(F)$ contains an $n$-vertex path $P_n$ for any spanning forest $F\subset G$. The size Ramsey number $\hat{R}(\mathcal{C}, P_n)$ is the smallest integer $m$ such that there exists a graph $G$ with $m$ edges for which $G\to (\mathcal{C}, P_n)$. Dudek, Khoeini and Prałat proved that for sufficiently large $n$, $2.0036n \le \hat{R}(\mathcal{C}, P_n)\le 31n$. In this note, we improve both the lower and upper bounds to $2.066n\le \hat{R}(\mathcal{C}, P_n)\le 5.25n+O(1).$ Our construction for the upper bound is completely different than the one considered by Dudek, Khoeini and Prałat. We also have a computer assisted proof of the upper bound $\hat{R}(\mathcal{C}, P_n)\le \frac{75}{19}n +O(1) < 3.947n $.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源