论文标题

网络物理系统模型的采矿环境假设

Mining Environment Assumptions for Cyber-Physical System Models

论文作者

Mohammadinejad, Sara, Deshmukh, Jyotirmoy V., Puranic, Aniruddh G.

论文摘要

许多复杂的网络物理系统可以建模为实时相互作用的异质组件。我们假设每个组件的正确性可以指定为由组件产生的输出信号满足的要求,并且这种输出保证在实时时间逻辑(例如信号时间逻辑(STL))中表示。在本文中,我们假设相应的输出信号满足输出信号的大量输入信号也可以使用我们称为环境假设的STL公式来紧凑。我们提出了一种使用监督学习技术来挖掘这种环境假设的算法。从本质上讲,我们的算法将环境假设视为分类器,如果相应的输出信号满足输出要求,则将输入信号标记为好的分类器,否则不好。我们的学习方法同时学习了STL公式的结构以及公式中出现的数字常数的值。为了实现这一目标,我们将一个程序结合在一起,以系统地列举候选参数STL(PSTL)公式,以及基于决策树的方法以学习参数值。我们展示了来自几个领域的现实世界数据的实验结果,包括运输和医疗保健。

Many complex cyber-physical systems can be modeled as heterogeneous components interacting with each other in real-time. We assume that the correctness of each component can be specified as a requirement satisfied by the output signals produced by the component, and that such an output guarantee is expressed in a real-time temporal logic such as Signal Temporal Logic (STL). In this paper, we hypothesize that a large subset of input signals for which the corresponding output signals satisfy the output requirement can also be compactly described using an STL formula that we call the environment assumption. We propose an algorithm to mine such an environment assumption using a supervised learning technique. Essentially, our algorithm treats the environment assumption as a classifier that labels input signals as good if the corresponding output signal satisfies the output requirement, and as bad otherwise. Our learning method simultaneously learns the structure of the STL formula as well as the values of the numeric constants appearing in the formula. To achieve this, we combine a procedure to systematically enumerate candidate Parametric STL (PSTL) formulas, with a decision-tree based approach to learn parameter values. We demonstrate experimental results on real world data from several domains including transportation and health care.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源