论文标题

粒子过滤的最佳测量预算分配

Optimal measurement budget allocation for particle filtering

论文作者

Aspeel, Antoine, Gouverneur, Amaury, Jungers, Raphaël M., Macq, Benoît

论文摘要

粒子过滤是目标跟踪的强大工具。当限制观察预算时,有必要将测量结果降低到精心选择的有限样本。在有限的时间范围内研究了离散的随机非线性动力学系统。选择粒子过滤的最佳测量时间的问题被形式化为组合优化问题。我们提出了一种基于遗传算法,蒙特卡洛算法和颗粒滤波器的嵌套的近似解决方案。首先,一个例子表明,遗传算法的表现优于随机试验优化。然后,说明了不规则测量与定期时间间隔进行的测量的兴趣,并量化了我们提出的解决方案的效率:在87.5%的情况下获得更好的过滤性能,平均而言,相对改善为27.7%。

Particle filtering is a powerful tool for target tracking. When the budget for observations is restricted, it is necessary to reduce the measurements to a limited amount of samples carefully selected. A discrete stochastic nonlinear dynamical system is studied over a finite time horizon. The problem of selecting the optimal measurement times for particle filtering is formalized as a combinatorial optimization problem. We propose an approximated solution based on the nesting of a genetic algorithm, a Monte Carlo algorithm and a particle filter. Firstly, an example demonstrates that the genetic algorithm outperforms a random trial optimization. Then, the interest of non-regular measurements versus measurements performed at regular time intervals is illustrated and the efficiency of our proposed solution is quantified: better filtering performances are obtained in 87.5% of the cases and on average, the relative improvement is 27.7%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源