论文标题

连续培训生成的对抗网络,以设计光学斗篷

Successive Training of a Generative Adversarial Network for the Design of an Optical Cloak

论文作者

Blanchard-Dionne, André-Pierre, Martin, Olivier J. F.

论文摘要

我们提出了一种基于深卷积生成对抗网络(DCGAN)来设计二维光学斗篷的优化算法。光学斗篷由均匀和各向同性介电材料的外壳组成,披肩是通过壳的几何形状实现的。我们使用来自DCGAN解决方案的反馈循环依次重新训练,并提高其预测和找到最佳几何形状的能力。

We present an optimization algorithm based on a deep convolution generative adversarial network (DCGAN) to design a 2-Dimensional optical cloak. The optical cloak consists in a shell of uniform and isotropical dielectric material, and the cloaking is achieved via the geometry of the shell. We use a feedback loop from the solutions of the DCGAN to successively retrain it and improve its ability to predict and find optimal geometries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源