论文标题

用可数光谱完成无数的本地戒指

Completions of Uncountable Local Rings with Countable Spectra

论文作者

Loepp, S., Yu, Teresa

论文摘要

我们发现,完整的本地(Noetherian)环是具有可数频谱的不可数量的本地(noetherian)域的必要条件。我们的结果表明,具有可计数光谱的无数本地域比以前认为的更为普遍。我们还表征了不可数的本地域的完成,假设完成包含理由,完成具有可数光谱的无数本地独特分解域,完成具有可数光谱的不可容纳的非属性本地域的完成以及完成无数局部局部独特分支域具有可计数的无数分支域。

We find necessary and sufficient conditions for a complete local (Noetherian) ring to be the completion of an uncountable local (Noetherian) domain with a countable spectrum. Our results suggest that uncountable local domains with countable spectra are more common than previously thought. We also characterize completions of uncountable excellent local domains with countable spectra assuming the completion contains the rationals, completions of uncountable local unique factorization domains with countable spectra, completions of uncountable noncatenary local domains with countable spectra, and completions of uncountable noncatenary local unique factorization domains with countable spectra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源