论文标题

关于GAN产生的心脏MRI的有效性进行分割

On the effectiveness of GAN generated cardiac MRIs for segmentation

论文作者

Skandarani, Youssef, Painchaud, Nathan, Jodoin, Pierre-Marc, Lalande, Alain

论文摘要

在这项工作中,我们提出了一个变异自动编码器(VAE) - 生成对抗网络(GAN)模型,该模型可以生成高度逼真的MRI及其像素准确的地面图,以应用Cine -MR Image Cardiac分割。在我们模型的一侧是一个跨自动编码器(VAE)训练,可以学习心脏形状的潜在表示。另一侧是一种使用“空间自适应(DE)归一化”(Spade)模块来生成量身定制在给定解剖图的逼真的MR图像的gan。在测试时,VAE潜在空间的采样允许产生任意的大量心形状,这些心形被馈送到gan中,后来产生了MR图像,其心脏结构适合心脏形状。换句话说,我们的系统可以产生大量逼真但标记的心脏MR图像。我们表明,与传统技术相比,使用我们的合成注释图像训练的CNN进行分割。我们还表明,将数据增强与我们的GAN生成的图像结合起来,导致骰子得分的提高高达12%,同时允许在其他数据集上获得更好的概括功能。

In this work, we propose a Variational Autoencoder (VAE) - Generative Adversarial Networks (GAN) model that can produce highly realistic MRI together with its pixel accurate groundtruth for the application of cine-MR image cardiac segmentation. On one side of our model is a Variational Autoencoder (VAE) trained to learn the latent representations of cardiac shapes. On the other side is a GAN that uses "SPatially-Adaptive (DE)Normalization" (SPADE) modules to generate realistic MR images tailored to a given anatomical map. At test time, the sampling of the VAE latent space allows to generate an arbitrary large number of cardiac shapes, which are fed to the GAN that subsequently generates MR images whose cardiac structure fits that of the cardiac shapes. In other words, our system can generate a large volume of realistic yet labeled cardiac MR images. We show that segmentation with CNNs trained with our synthetic annotated images gets competitive results compared to traditional techniques. We also show that combining data augmentation with our GAN-generated images lead to an improvement in the Dice score of up to 12 percent while allowing for better generalization capabilities on other datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源