论文标题

周期性轨道角动量和无穷大的角度位置的不确定性原理

Uncertainty principle for periodic orbital angular momentum and angular position with infinity

论文作者

Huang, Hsiao-Chih

论文摘要

角度不确定性原理(Ancular-UP)指出轨道角动量(OAM)精确地定义在具有角度位置(AP)的光学涡旋(AP)上,范围为2π方位角坐标(ϕ)。但是,这对可观察的状态是离散选择的,并且与下界的一对未选择的线性动量和位置状态对通讯。这种离散的选择使得一对角度不确定性与n折对称性无关。在此,我们证明了平均OAM与方位角相梯度(PG)和H/2π的乘积之间的较小差异,这是一组周期性螺旋波前锋的较大的ϕ范围,在一组众多奇异的光束中,每个光束都利用叠置的叠置,这些叠置构成了两种构成两个分数光束,这些光束在ezimuthal pg中具有Δ的差异。对于任何对周期性OAM和AP的未选择的未选择状态的恒定产物,这是一个定期的角度(周期性),其潜在的不确定性或一对周期性OAM和AP不确定性的无限尺度。该常数下限对应于线性固定的Robeson,对于一对未观察到的可观测值。但是,它更强大2.67倍。我们通过说明对相移构建的图像的物理解释,证明了周期性上升的宏观示例。此外,我们证明了这对奇异光束中的一对定期角度不确定性通过分别分配和乘以亚N周期数来与一对角度不确定性兼容。我们证明,在具有相同等效PG的奇异光中,OAM和AP的不确定性都是δ的两个单调函数和两种各种分布类型的OAM光谱和图像强度。我们通过实验生成这些奇异的光束。

The angular uncertainty principle (angular-UP) states the orbital angular momentum (OAM) is precisely defined in an optical vortex with angular position (AP) ranging over 2π azimuthal coordinate (ϕ). However, the pair of observable states is discretely selected and does not correspondent to the pair of unselected linear momentum and position states for the lower bound. This discrete selection is such that the pair of angular uncertainties is independent of n-fold symmetry. Herein, we demonstrate the smaller difference between mean OAM and the product of azimuthal phase-gradient (PG) and h/2π, the larger ϕ range of one periodic helical wavefront in a set of numerous singular light beams, each of which utilizes the superposition comprising two fractional OAM light beams that have a difference of δ in the azimuthal PG. This is a periodically angular UP (periodic-UP) for any pair of unselected states of periodic OAM and AP by a constant product 0.187 h/2π on their underlying uncertainties, or the pair of unlimited scale of periodic OAM and AP uncertainties. This constant lower bound corresponds to the Robeson bound held by linear UP for the pair of unselected observables; however, it is stronger by 2.67 times. We demonstrate a macroscopic example of the periodic-UP by illustrating a physical interpretation of the image constructed by phase shift. Moreover, we demonstrate that the pair of periodically angular uncertainties in this singular light beam is compatible with the pair of angular uncertainties by dividing and multiplying a sub-n periodic number, respectively. We demonstrate that both OAM and AP uncertainties are two monotonic functions of δ and two various distribution types of OAM spectrum and image intensity in this singular light with identically equivalent PGs. We experimentally generate these singular light beams.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源