论文标题
贝叶斯分析对磁性纳米颗粒的表征的好处
The benefits of a Bayesian analysis for the characterization of magnetic nanoparticles
论文作者
论文摘要
磁性纳米颗粒为各种生物医学应用提供了独特的潜力,但是在商业使用之前,需要对其结构和磁性特性进行标准化表征。为了进行彻底的表征,常规磁力测定法和先进散射技术的组合显示出巨大的潜力。在目前的工作中,我们表征了一个高质量的氧化铁纳米颗粒的粉末样品,这些粉末被DC磁力测定法和磁性小角度中子散射(SANS)包围。为了从数据中检索粒子参数,例如它们的尺寸分布和饱和磁化,我们应用了单个数据集的标准模型拟合以及多个曲线的全局拟合,包括磁力测定和SANS测量的组合。我们表明,通过将标准最小二乘拟合的标准最小二乘与随后的贝叶斯方法相结合以进行数据改进,可以很容易地提取模型参数及其互相关的概率分布,从而可以直接提取有关拟合质量的直接视觉反馈。在高度相关参数的情况下,这可以防止数据过度拟合,并将贝叶斯方法作为磁性纳米颗粒样品标准化数据分析的理想组成部分。
Magnetic nanoparticles offer a unique potential for various biomedical applications, but prior to commercial usage a standardized characterization of their structural and magnetic properties is required. For a thorough characterization, the combination of conventional magnetometry and advanced scattering techniques has shown great potential. In the present work, we characterize a powder sample of high-quality iron oxide nanoparticles that are surrounded with a homogeneous thick silica shell by DC magnetometry and magnetic small-angle neutron scattering (SANS). To retrieve the particle parameters such as their size distribution and saturation magnetization from the data, we apply standard model fits of individual data sets as well as global fits of multiple curves, including a combination of the magnetometry and SANS measurements. We show that by combining a standard least-squares fit with a subsequent Bayesian approach for the data refinement, the probability distributions of the model parameters and their cross correlations can be readily extracted, which enables a direct visual feedback regarding the quality of the fit. This prevents an overfitting of data in case of highly correlated parameters and renders the Bayesian method as an ideal component for a standardized data analysis of magnetic nanoparticle samples.