论文标题

$ \ mathbb {t}^2 $上的一些平滑流量的Prime Orbits

Prime orbits for some smooth flows on $\mathbb{T}^2$

论文作者

Kanigowski, Adam

论文摘要

我们考虑一类平滑的混合流量$ t^{α,γ} $ on $ \ mathbb {t}^2 $,带有一个退化的固定点$ x_0 \ in \ mathbb {t}^2 $ of Power类型$γ\ in(-1,0)$。我们证明,对于$g_δ$密度集$α\ in \ mathbb {t} $,$ t^{α,γ} $的素数定理沿着完整的上层密度子序列。特别是,在\ Mathbb {t}^2 \ setMinus \ {x_0 \} $中,每一个$ x \ in prime orbit $ \ mathbb {t}^2 $。 我们还表明,在$ \ mathbb {t}^2 $上,有一类平滑的弱混合流,该流量为prime number定理所持的。实际上,我们表明存在一组密集的平滑函数(在统一拓扑中),该功能量定理定量(带有错误项$ \ log^{ - a} n $)。

We consider a class of smooth mixing flows $T^{α,γ}$ on $\mathbb{T}^2$ with one degenerated fixed point $x_0\in \mathbb{T}^2$ of power type $γ\in (-1,0)$. We prove that for a $G_δ$ dense set of $α\in \mathbb{T}$, a prime number theorem for $T^{α,γ}$ holds along a full upper density subsequence. In particular it follows that for every $x\in \mathbb{T}^2\setminus\{x_0\}$, the prime orbit $\mathbb{T}^2$. We also show that there exists a class of smooth weakly mixing flows on $\mathbb{T}^2$ for which a prime number theorem holds. In fact we show that there exists a dense set of smooth functions (in the uniform topology) for which prime number theorem holds quantitatively (with an error term $\log^{-A}N$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源