论文标题
从雷利 - 贝纳德对流到多孔媒体对流:孔隙率如何影响传热结构
From Rayleigh-Bénard convection to porous-media convection: how porosity affects heat transfer and flow structure
论文作者
论文摘要
我们对(在大多数情况下是常规的)多孔培养基中对雷利 - 贝纳德(RB)对流的热传递和流量结构进行了数值研究,这些介质由位于正方形晶格上的圆形,实心障碍物组成。这项研究的重点是孔隙率$ ϕ $在从传统的RB对流的过渡过程中的作用,并以$ ϕ = 1 $(不包括障碍)到达西型多孔 - 多孔 - 媒体对流,$ ϕ $接近0。在一个单元格中进行仿真,$ 10^5^5^5^5^5^5^5^5^5^5^5^5^5^5 $ ϕ $,以固定的prandtl数字$ pr = 4.3 $,我们将自己限制在二维情况下。对于固定的$ ra $,发现随着$ ϕ $的函数而发现非单调的nu $ nu $;也就是说,随着$ ϕ $的减少,它首先增加,然后以$ ϕ $接近0的减少。一方面,在多孔介质中增强了流相干性,这对传热是有益的。另一方面,由于多孔结构引起的阻力增强,对流会减慢,从而导致减少传热。对于固定的$ ϕ $,根据$ ra $,确定了两个不同的传热状态,具有$ NU $ vs $ ra $的不同有效的幂律行为,即,粘度占主导地位时,低$ ra $的陡峭一个陡峭的一个陡峭的速度,而标准的古典$ ra $。当热边界层厚度和孔尺度相当时,就会发生缩放交叉。分析了多孔结构对温度和速度波动,对流热通量和能量耗散速率的影响,进一步证明了多孔结构的竞争作用以增强或减少热传递。
We perform a numerical study of the heat transfer and flow structure of Rayleigh-Bénard (RB) convection in (in most cases regular) porous media, which are comprised of circular, solid obstacles located on a square lattice. This study is focused on the role of porosity $ϕ$ in the flow properties during the transition process from the traditional RB convection with $ϕ=1$ (so no obstacles included) to Darcy-type porous-media convection with $ϕ$ approaching 0. Simulations are carried out in a cell with unity aspect ratio, for the Rayleigh number $Ra$ from $10^5$ to $10^{10}$ and varying porosities $ϕ$, at a fixed Prandtl number $Pr=4.3$, and we restrict ourselves to the two dimensional case. For fixed $Ra$, the Nusselt number $Nu$ is found to vary non-monotonously as a function of $ϕ$; namely, with decreasing $ϕ$, it first increases, before it decreases for $ϕ$ approaching 0. The non-monotonous behaviour of $Nu(ϕ)$ originates from two competing effects of the porous structure on the heat transfer. On the one hand, the flow coherence is enhanced in the porous media, which is beneficial for the heat transfer. On the other hand, the convection is slowed down by the enhanced resistance due to the porous structure, leading to heat transfer reduction. For fixed $ϕ$, depending on $Ra$, two different heat transfer regimes are identified, with different effective power-law behaviours of $Nu$ vs $Ra$, namely, a steep one for low $Ra$ when viscosity dominates, and the standard classical one for large $Ra$. The scaling crossover occurs when the thermal boundary layer thickness and the pore scale are comparable. The influences of the porous structure on the temperature and velocity fluctuations, convective heat flux, and energy dissipation rates are analysed, further demonstrating the competing effects of the porous structure to enhance or reduce the heat transfer.