论文标题
对亚谐波功能和度量的预订,并应用于全体形态功能的零的分布
Preorders on Subharmonic Functions and Measures with Applications to the Distribution of Zeros of Holomorphic Functions
论文作者
论文摘要
令$ x $为域上的一类扩展数值功能,$ d $ d $ d $ - 二维欧几里得空间$ \ mathbb r^d $,$ h \ subset x $。给定的$ u,m \ in x $,如果h $中有一个函数$ h \,则我们编写$ u \ prec_h m $,以便$ u+h \ h \ h \ leq m $上的$ d $。我们认为,在$ h $是$ h $是$ d $或$ h $上的所有谐波功能的情况下,$ d $的一对特殊的预订$ \ prec_h $是$ d $上的m $,是所有subharmonic函数的所有谐波函数的空间$ h \ not \ equiv- equiv- equiv -equiv -equiv -equiv -equiv -orpy y in f $ d $。 Main results are dual equivalent forms for this preorder $\prec_H$ in terms of balayage processes for Riesz measures of subharmonic functions $u$ and $M$, for Jensen and Arens-Singer (representing) measures, for potentials of these measures, and for special test functions generated by subharmonic functions on complements $D\setminus S$ of non-empty precompact subsets $S\Subset D $。域$ d \ subset \ mathbb c^n $的全体形态功能的应用程序$ f $与零限制下的零函数集合$ f $的分布相关。如果一个域$ d \ subset \ mathbb c $是一个有限连接的域,具有非空外观的域,则是$ d $的边界上有两个不同点的简单连接域,那么我们的条件是$ f \ neq 0 $,$ f \ neq 0 $,带有$ | f | f | f | f | f | \ \ leq \ leq \ exp m $ oon $ d $是必要的,并且是必要的。
Let $X$ be a class of extended numerical functions on a domain $D$ of $d$-dimensional Euclidean space $\mathbb R^d$, $H\subset X$. Given $u,M\in X$, we write $u\prec_H M$ if there is a function $h\in H$ such that $u+h\leq M$ on $D$. We consider this special preorder $\prec_H$ for a pair of subharmonic unctions $u, M$ on $D$ in cases where $H$ is the space of all harmonic functions on $D$ or $H$ is the convex cone of all subharmonic functions $h \not\equiv -\infty$ on $D$. Main results are dual equivalent forms for this preorder $\prec_H$ in terms of balayage processes for Riesz measures of subharmonic functions $u$ and $M$, for Jensen and Arens-Singer (representing) measures, for potentials of these measures, and for special test functions generated by subharmonic functions on complements $D\setminus S$ of non-empty precompact subsets $S\Subset D$. Applications to holomorphic functions $f$ on a domain $D\subset \mathbb C^n$ relate to the distribution of zero sets of functions $f$ under upper restrictions $|f|\leq \exp M$ on $D$. If a domain $D\subset \mathbb C$ is a finitely connected domain with non-empty exterior or a simply connected domain with two different points on the boundary of $D$, then our conditions for the distribution of zeros of $f\neq 0$ with $|f|\leq \exp M$ on $D$ are both necessary and sufficient.