论文标题
关于埃克的局部整体数量,对于古代平均曲率流而言
On Ecker's local integral quantity at infinity for ancient mean curvature flows
论文作者
论文摘要
我们指出,埃克的本地积分数量与Huisken在Infinity的全球整体数量一致,如果Huisken的一个时间板在每个时间板上都是有限的,那么对于古代平均曲率流而言。特别是,这意味着埃克(Ecker)在无穷大的整数数量的有限性意味着无穷大的熵的有限性。
We point out that Ecker's local integral quantity agrees with Huisken's global integral quantity at infinity for ancient mean curvature flows if Huisken's one is finite on each time-slice. In particular, this means that the finiteness of Ecker's integral quantity at infinity implies the finiteness of the entropy at infinity.