论文标题
局部半监督儿童大脑MRI中脑组织分类的方法
Local semi-supervised approach to brain tissue classification in child brain MRI
论文作者
论文摘要
儿童大脑MRI中的大多数分割方法都是监督的,并且基于主要大脑结构的全球强度分布。成功的监督方法的成功实施取决于适合年龄的概率脑图的可用性。为了研究早期正常脑发育,这种大脑地图集的建造仍然是一个重大挑战。此外,使用全球强度统计量导致对主要脑组织类别的检测不准确,这是由于MR信号在早期发育的大脑组成部分内的实质强度变化。为了克服这些方法上的局限性,我们开发了一个局部的半监督框架。它基于用于模式识别的内核Fisher判别分析(KFDA),并与客观的结构相似性指数(SSIM)相结合,用于感知图像质量评估。所提出的方法将最佳的大脑分配到具有不同平均强度值的子域,然后对组成脑部分之间的分离表面进行SSIM引导的计算。然后,通过模拟退火将分类图像子域通过切片缝制,形成了分类大脑的全局图像。在本文中,我们考虑将分类为主要组织类别(白质和灰质)和脑脊液,并在8至11个月和44至60个月的脑模板的例子上说明了拟议的框架。我们表明,我们的方法通过将其与最新的分类技术进行比较,改善了组织类别的检测,称为部分体积估计。
Most segmentation methods in child brain MRI are supervised and are based on global intensity distributions of major brain structures. The successful implementation of a supervised approach depends on availability of an age-appropriate probabilistic brain atlas. For the study of early normal brain development, the construction of such a brain atlas remains a significant challenge. Moreover, using global intensity statistics leads to inaccurate detection of major brain tissue classes due to substantial intensity variations of MR signal within the constituent parts of early developing brain. In order to overcome these methodological limitations we develop a local, semi-supervised framework. It is based on Kernel Fisher Discriminant Analysis (KFDA) for pattern recognition, combined with an objective structural similarity index (SSIM) for perceptual image quality assessment. The proposed method performs optimal brain partitioning into subdomains having different average intensity values followed by SSIM-guided computation of separating surfaces between the constituent brain parts. The classified image subdomains are then stitched slice by slice via simulated annealing to form a global image of the classified brain. In this paper, we consider classification into major tissue classes (white matter and grey matter) and the cerebrospinal fluid and illustrate the proposed framework on examples of brain templates for ages 8 to 11 months and ages 44 to 60 months. We show that our method improves detection of the tissue classes by its comparison to state-of-the-art classification techniques known as Partial Volume Estimation.