论文标题

不对称估计和总产量问题

Asymmetric estimates and the sum-product problems

论文作者

Xue, Boqing

论文摘要

我们显示了两个不对称估计值,一个是在共线三元的数量上,另一个是在解决方案的估计数中$(a_1+a_2)(a_1^{\ prime \ prime \ prime}+a_2^{\ prime \ prime \ prime \ prime \ prime})=(a_1^\ prime+a_2^\ prime)(a_1^{a_1^{\ prime \ prime \ prime}+a_2^+a_2^^{\ prime \ prime \ prime \ prime})$。作为应用程序,我们改善了差异/分层估计和Balog-wooley分解的结果:对于任何有限的子集$ a $ a $ a $ \ shatbb {r} $,\ [\ max \ [\ max \ {| a-a-a |,| aa | aa | \ \ \ \ \ \ \ \ \ \ \ gtrsim \ max \ {| a-a |,| a/a | \} \ gtrsim | a |^{1+15/49}。此外,还有sets $ b,c $ with $ a = b \ sqcup c $,以便\ [\ max \ {e^+(b),\,e^\ times(c)\} \ lyseSim | a | a |^{3-3/11}。 \]

We show two asymmetric estimates, one on the number of collinear triples and the other on that of solutions to $(a_1+a_2)(a_1^{\prime\prime\prime}+a_2^{\prime\prime\prime})=(a_1^\prime+a_2^\prime)(a_1^{\prime\prime}+a_2^{\prime\prime})$. As applications, we improve results on difference-product/division estimates and on Balog-Wooley decomposition: For any finite subset $A$ of $\mathbb{R}$, \[ \max\{|A-A|,|AA|\} \gtrsim |A|^{1+105/347},\quad \max\{|A-A|,|A/A|\} \gtrsim |A|^{1+15/49}. \] Moreover, there are sets $B,C$ with $A=B\sqcup C$ such that \[ \max\{E^+(B),\, E^\times (C)\} \lesssim |A|^{3-3/11}. \]

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源