论文标题
快速解码等级,子空间和总和度量
Fast Decoding of Codes in the Rank, Subspace, and Sum-Rank Metric
论文作者
论文摘要
我们加快了不同度量标准的三个代码类的现有解码算法:在等级度量标准中交错的Gabidulin代码,在子空间度量标准中取消了交织的Gabidulin代码,并在SUM-RANK-RANK METRIC中的线性化的Reed-Solomon代码。加快速度是通过新算法来实现的,这些算法将解码器的基本计算问题的核心降低到一个常见工具:计算矩阵矩阵的左右计算偏斜多项式环。为了实现这一目标,我们描述了普通多项式矩阵现有的PM-BASIS算法的偏斜分析。这捕获了偏度多项式的大部分作品,并且复杂性益处来自于执行此操作的现有算法比经典二次复杂性更快。各种与解码相关的计算问题的新算法在它们中很有趣,并且具有进一步的应用,特别是其他几个代码的解码器的部分以及与偏斜多项式评估有关的基础问题。
We speed up existing decoding algorithms for three code classes in different metrics: interleaved Gabidulin codes in the rank metric, lifted interleaved Gabidulin codes in the subspace metric, and linearized Reed-Solomon codes in the sum-rank metric. The speed-ups are achieved by new algorithms that reduce the cores of the underlying computational problems of the decoders to one common tool: computing left and right approximant bases of matrices over skew polynomial rings. To accomplish this, we describe a skew-analogue of the existing PM-Basis algorithm for matrices over ordinary polynomials. This captures the bulk of the work in multiplication of skew polynomials, and the complexity benefit comes from existing algorithms performing this faster than in classical quadratic complexity. The new algorithms for the various decoding-related computational problems are interesting in their own and have further applications, in particular parts of decoders of several other codes and foundational problems related to the remainder-evaluation of skew polynomials.