论文标题

了解通过结构粗粒的无机和混合框架的几何多样性

Understanding the Geometric Diversity of Inorganic and Hybrid Frameworks through Structural Coarse-Graining

论文作者

Nicholas, Thomas C., Goodwin, Andrew L., Deringer, Volker L.

论文摘要

我们对复杂结构的大部分理解都是基于简化的:例如,在“节点”和“接头”的背景下,经常讨论金属有机框架,从而可以与简单的无机结构进行定性比较。在这里,我们展示了如何通过将基于原子密度的相似性(内核)功能和无监督的机器学习与长期存在的“粗粒度”原子结构相结合,如何在系统和定量的框架中获得这种理解。我们演示了后者如何进行比较截然不同的化学系统,并使用它来创建实验已知的四面体AB2网络的统一,二维结构图 - 包括覆盖水合物,沸石咪达唑酸盐框架(ZIFS)(ZIFS)和多样的无机阶段。然后,出现的结构关系可以与感兴趣的微观特性有关,我们为结构异质性和四面体密度提供了体现。

Much of our understanding of complex structures is based on simplification: for example, metal-organic frameworks are often discussed in the context of "nodes" and "linkers", allowing for a qualitative comparison with simpler inorganic structures. Here we show how such an understanding can be obtained in a systematic and quantitative framework, by combining atom-density based similarity (kernel) functions and unsupervised machine learning with the long-standing idea of "coarse-graining" atomic structure. We demonstrate how the latter enables a comparison of vastly different chemical systems, and use it to create a unified, two-dimensional structure map of experimentally known tetrahedral AB2 networks - including clathrate hydrates, zeolitic imidazolate frameworks (ZIFs), and diverse inorganic phases. The structural relationships that emerge can then be linked to microscopic properties of interest, which we exemplify for structural heterogeneity and tetrahedral density.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源