论文标题

图像超分辨率的迭代网络

Iterative Network for Image Super-Resolution

论文作者

Liu, Yuqing, Wang, Shiqi, Zhang, Jian, Wang, Shanshe, Ma, Siwei, Gao, Wen

论文摘要

作为传统的不良反相问题,单图像超分辨率(SISR)已被最近的卷积神经网络(CNN)的发展大大振兴。这些基于CNN的方法通常将低分辨率图像映射到其相应的高分辨率版本,具有复杂的网络结构和损失功能,显示出令人印象深刻的性能。本文提供了对常规SISR算法的新见解,并提出了依赖迭代优化的实质性不同的方法。在迭代优化的顶部提出了一种新型的迭代超分辨率网络(ISRN)。我们首先分析了图像SR问题的观察模型,通过模仿和融合每次迭代的方式更一般和有效地融合了可行的解决方案。考虑到批处理的缺点,我们提出了一种特征归一化(F-NORM,FN)方法来调节网络中的特征。此外,开发了一个具有FN的新型块来改善网络表示,称为FNB。提出了剩余的剩余结构来形成一个非常深的网络,该网络将FNB具有长长的跳过连接,以更好地传递信息并确定训练阶段。对用双考孔(BI)降解测试基准测试基准的广泛实验结果表明,我们的ISRN不仅可以恢复更多的结构信息,而且还可以实现与其他作品相比,参数更少的竞争或更好的PSNR/SSIM结果。除了BI之外,我们还使用Blur-Downscale(BD)和Downscale-Noise(DN)模拟现实世界的退化。 ISRN及其扩展ISRN+都比其他具有BD和DN降解模型的其他成绩更好。

Single image super-resolution (SISR), as a traditional ill-conditioned inverse problem, has been greatly revitalized by the recent development of convolutional neural networks (CNN). These CNN-based methods generally map a low-resolution image to its corresponding high-resolution version with sophisticated network structures and loss functions, showing impressive performances. This paper provides a new insight on conventional SISR algorithm, and proposes a substantially different approach relying on the iterative optimization. A novel iterative super-resolution network (ISRN) is proposed on top of the iterative optimization. We first analyze the observation model of image SR problem, inspiring a feasible solution by mimicking and fusing each iteration in a more general and efficient manner. Considering the drawbacks of batch normalization, we propose a feature normalization (F-Norm, FN) method to regulate the features in network. Furthermore, a novel block with FN is developed to improve the network representation, termed as FNB. Residual-in-residual structure is proposed to form a very deep network, which groups FNBs with a long skip connection for better information delivery and stabling the training phase. Extensive experimental results on testing benchmarks with bicubic (BI) degradation show our ISRN can not only recover more structural information, but also achieve competitive or better PSNR/SSIM results with much fewer parameters compared to other works. Besides BI, we simulate the real-world degradation with blur-downscale (BD) and downscale-noise (DN). ISRN and its extension ISRN+ both achieve better performance than others with BD and DN degradation models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源