论文标题

密度分支的素数

A Density of Ramified Primes

论文作者

Chan, Stephanie, McMeekin, Christine, Milovic, Djordjo

论文摘要

令$ k $为$ \ mathbb {q} $带有奇数类号码的奇数奇数字段的完全真实数字字段,因此每个完全正面的单位都是一个单位的平方,因此$ 2 $ in $ k/\ mathbb {q} $ intert inter。我们定义一个数字字段的家庭$ \ {k(p)\} _ p $,具体取决于$ k $,并由理性的素数$ p $索引,这些$ p $完全分为$ k/\ kathbb {q} $,因此$ p $始终以$ k(p)$ k(p)$ $ 2 $ $ 2 $ 2 $。以短字符总和为标准猜想的条件,这种理性的总理$ p $的密度在$ k(p)/\ mathbb {q} $中表现出两个可能的分支因素化之一,严格介于$ 0 $和$ 1 $之间,并且在$ [k:\ mathbb bbb的公式中都明确地给出了。在立方体情况下,我们的结果是无条件的。我们的证明依赖于对主要理想旋转联合分布的详细研究。

Let $K$ be a cyclic totally real number field of odd degree over $\mathbb{Q}$ with odd class number, such that every totally positive unit is the square of a unit, and such that $2$ is inert in $K/\mathbb{Q}$. We define a family of number fields $\{K(p)\}_p$, depending on $K$ and indexed by the rational primes $p$ that split completely in $K/\mathbb{Q}$, such that $p$ is always ramified in $K(p)$ of degree $2$. Conditional on a standard conjecture on short character sums, the density of such rational primes $p$ that exhibit one of two possible ramified factorizations in $K(p)/\mathbb{Q}$ is strictly between $0$ and $1$ and is given explicitly as a formula in terms of $[K:\mathbb{Q}]$. Our results are unconditional in the cubic case. Our proof relies on a detailed study of the joint distribution of spins of prime ideals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源