论文标题
基于稀疏性的音频拒绝方法:选定的概述,新算法和大规模评估
Sparsity-based audio declipping methods: selected overview, new algorithms, and large-scale evaluation
论文作者
论文摘要
在某些饱和度方案中,最新的音频下降进展大大改善了最新的%。然而,从业者需要指南来选择一种方法,尽管现有的基准在推进该领域方面起了重要作用,但需要大规模的实验来指导这些选择。首先,我们表明现有小规模基准的剪辑水平是中等的,并要求具有更明显剪辑水平的基准。然后,我们提出了一个通用算法框架,用于拒绝,该框架涵盖了利用时间频率稀疏性的最先进技术的现有和新组合:合成与分析稀疏性,具有普通或结构化的稀疏性。最后,我们系统地比较了这些组合和精选最先进的方法。使用大规模的数值基准和较小的正式听力测试,我们为语音和各种音乐类型的各种剪辑水平提供指南。该守则可公开用于可重复的研究和基准测试。
Recent advances in audio declipping have substantially improved the state of the art.% in certain saturation regimes. Yet, practitioners need guidelines to choose a method, and while existing benchmarks have been instrumental in advancing the field, larger-scale experiments are needed to guide such choices. First, we show that the clipping levels in existing small-scale benchmarks are moderate and call for benchmarks with more perceptually significant clipping levels. We then propose a general algorithmic framework for declipping that covers existing and new combinations of variants of state-of-the-art techniques exploiting time-frequency sparsity: synthesis vs. analysis sparsity, with plain or structured sparsity. Finally, we systematically compare these combinations and a selection of state-of-the-art methods. Using a large-scale numerical benchmark and a smaller scale formal listening test, we provide guidelines for various clipping levels, both for speech and various musical genres. The code is made publicly available for the purpose of reproducible research and benchmarking.