论文标题

心脏异常检测的可解释的可解释的深度学习分类器,而无需分割

A Robust Interpretable Deep Learning Classifier for Heart Anomaly Detection Without Segmentation

论文作者

Dissanayake, Theekshana, Fernando, Tharindu, Denman, Simon, Sridharan, Sridha, Ghaemmaghami, Houman, Fookes, Clinton

论文摘要

传统上,异常的心脏声音分类被构成三阶段的过程。第一阶段涉及分割Phonocartiogranmon以检测基本的心脏声音。之后提取功能并执行分类。该领域的一些研究人员认为,分割步骤是不必要的计算负担,而另一些研究人员则将其视为提取提取的先前步骤。当通过在分析前将心脏声音的研究与那些忽视该步骤进行分析的研究进行比较时,是否仍在开放特征提取之前将心脏声音细分的问题。在这项研究中,我们明确地研究了心脏声音分割作为心脏声音分类的先前步骤的重要性,然后寻求应用所获得的见解来提出一个可靠的分类器以进行异常的心脏声音检测。此外,我们认识到对医学领域中可解释的人工智能(AI)模型的紧迫需求,我们还使用模型解释技术推出了分类器学到的隐藏表示形式。实验结果表明,分割在异常心脏声音分类中起着至关重要的作用。我们的新分类器也被证明是健壮的,稳定的,最重要的是可解释的,在广泛使用的Physionet数据集上的精度几乎为100%。

Traditionally, abnormal heart sound classification is framed as a three-stage process. The first stage involves segmenting the phonocardiogram to detect fundamental heart sounds; after which features are extracted and classification is performed. Some researchers in the field argue the segmentation step is an unwanted computational burden, whereas others embrace it as a prior step to feature extraction. When comparing accuracies achieved by studies that have segmented heart sounds before analysis with those who have overlooked that step, the question of whether to segment heart sounds before feature extraction is still open. In this study, we explicitly examine the importance of heart sound segmentation as a prior step for heart sound classification, and then seek to apply the obtained insights to propose a robust classifier for abnormal heart sound detection. Furthermore, recognizing the pressing need for explainable Artificial Intelligence (AI) models in the medical domain, we also unveil hidden representations learned by the classifier using model interpretation techniques. Experimental results demonstrate that the segmentation plays an essential role in abnormal heart sound classification. Our new classifier is also shown to be robust, stable and most importantly, explainable, with an accuracy of almost 100% on the widely used PhysioNet dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源