论文标题

准态延伸到磁盘的符号呈现组

Extensions of quasi-morphisms to the symplectomorphism group of the disk

论文作者

Maruyama, Shuhei

论文摘要

在$ \ rm {symp}(d,\ partial d)的磁盘的符号形态$上,这是边界附近的身份,存在称为ruelle不变性和gambaudo-ghys quasi-quasi morphismmorphisms的同质准态性。在本文中,我们表明,上述均质的准型术扩展到整个组上的均质准杂种$ \ rm {symp}(d)$ symplytormorpormists的$。作为推论,我们证明了第二个有限的共同体$ h_b^2(\ rm {symp}(d))$是无限维的。

On the group $\rm{Symp}(D, \partial D)$ of symplectomorphisms of the disk which are the identity near the boundary, there are homogeneous quasi-morphisms called the Ruelle invariant and Gambaudo-Ghys quasi-morphisms. In this paper, we show that the above homogeneous quasi-morphisms extend to homogeneous quasi-morphisms on the whole group $\rm{Symp}(D)$ of symplectomorphisms of the disk. As a corollary, we show that the second bounded cohomology $H_b^2(\rm{Symp}(D))$ is infinite-dimensional.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源