论文标题
人工神经网络的无似然宇宙学约束:哈勃参数和sne ia的应用
Likelihood-free Cosmological Constraints with Artificial Neural Networks: An Application on Hubble Parameters and SNe Ia
论文作者
论文摘要
从复杂过程中产生的宇宙学数据的误差,例如观察性哈勃参数数据(OHD)和IA型超新星(SN IA)数据,无法通过简单的分析概率分布,例如高斯分布。为了从这些数据限制宇宙学参数,通常使用无可能的推断来绕过可能性的直接计算。在本文中,我们提出了一种新的程序,以使用两个人工神经网络(ANN),掩盖的自回归流量(MAF)和DeNoising AutoCododer(DAE)执行无可能的宇宙学推断。我们的过程是第一个使用DAE从数据中提取功能的过程,以简化估计后部所需的MAF结构。该过程在模拟的哈勃参数数据上测试了,该过程显示了从数据中提取特征并估算后验分布的能力,而无需拖延可能性。我们证明,它可以准确地近似实际的后部,实现与传统MCMC方法相当的性能,并且在添加DAE时,MAF获得了更好的训练结果,以获得少量模拟的结果。我们还讨论了所提出的程序在OHD和万神殿SN IA数据中的应用,并使用它们来限制非流量$λ$ CDM模型的宇宙学参数。对于SNE IA,我们使用拟合的光曲线参数在$ H_0,ω_M,ω_λ$上找到与相关工作相似的约束,使用较少的经验分布。此外,这项工作也是第一个在OHD模拟过程中使用高斯过程的工作。
The errors of cosmological data generated from complex processes, such as the observational Hubble parameter data (OHD) and the Type Ia supernova (SN Ia) data, cannot be accurately modeled by simple analytical probability distributions, e.g. Gaussian distribution. To constrain cosmological parameters from these data, likelihood-free inference is usually used to bypass the direct calculation of the likelihood. In this paper, we propose a new procedure to perform likelihood-free cosmological inference using two artificial neural networks (ANN), the Masked Autoregressive Flow (MAF) and the denoising autoencoder (DAE). Our procedure is the first to use DAE to extract features from data, in order to simplify the structure of MAF needed to estimate the posterior. Tested on simulated Hubble parameter data with a simple Gaussian likelihood, the procedure shows the capability of extracting features from data and estimating posterior distributions without the need of tractable likelihood. We demonstrate that it can accurately approximate the real posterior, achieve performance comparable to the traditional MCMC method, and the MAF gets better training results for small number of simulation when the DAE is added. We also discuss the application of the proposed procedure to OHD and Pantheon SN Ia data, and use them to constrain cosmological parameters from the non-flat $Λ$CDM model. For SNe Ia, we use fitted light curve parameters to find constraints on $H_0,Ω_m,Ω_Λ$ similar to relevant work, using less empirical distributions. In addition, this work is also the first to use Gaussian process in the procedure of OHD simulation.