论文标题
软件工程中的系统文献评论 - 使用Cohen的Kappa统计数据来增强研究选择过程
Systematic Literature Reviews in Software Engineering -- Enhancement of the Study Selection Process using Cohen's Kappa Statistic
论文作者
论文摘要
上下文:系统文献综述(SLR)依靠一种严格而可审核的方法来最大程度地减少偏见和确保可靠性。使用一组包含/排除标准选择研究时会产生一种常见的偏见。可以通过双重修订来减少这种偏见,这使得选择过程更加耗时,并且仍然容易产生偏见,具体取决于每个研究人员如何解释包含/排除标准。目的:为了减少研究选择过程中所花费的偏见和时间,本文介绍了一个基于Cohen Kappa统计量的研究的过程。我们已经根据该统计数据的使用定义了一个迭代过程,在此统计数据中,将标准完善,直到获得几乎完美的一致性(k> 0.8)。在这一点上,两位研究人员以相同的方式解释了选择标准,从而减少了偏见。从本协议开始,可以消除双重审查;因此,所花费的时间大大缩短了。方法:通过在2005年至2018年发表的工程领域的第三级研究中,这项迭代过程的可行性证明了这项选择研究的可行性。结果:研究选择过程中保存的时间为28%(对于152项研究),如果研究数量足够大,则可以节省的时间趋于差异至50%。结论:研究人员和学生可以利用这种迭代过程来选择研究SLR时选择研究以减少包容和排除标准的偏见。它对于很少的资源研究特别有用。
Context: Systematic literature reviews (SLRs) rely on a rigorous and auditable methodology for minimizing biases and ensuring reliability. A common kind of bias arises when selecting studies using a set of inclusion/exclusion criteria. This bias can be decreased through dual revision, which makes the selection process more time-consuming and remains prone to generating bias depending on how each researcher interprets the inclusion/exclusion criteria. Objective: To reduce the bias and time spent in the study selection process, this paper presents a process for selecting studies based on the use of Cohen's Kappa statistic. We have defined an iterative process based on the use of this statistic during which the criteria are refined until obtain almost perfect agreement (k>0.8). At this point, the two researchers interpret the selection criteria in the same way, and thus, the bias is reduced. Starting from this agreement, dual review can be eliminated; consequently, the time spent is drastically shortened. Method: The feasibility of this iterative process for selecting studies is demonstrated through a tertiary study in the area of software engineering on works that were published from 2005 to 2018. Results: The time saved in the study selection process was 28% (for 152 studies) and if the number of studies is sufficiently large, the time saved tend asymptotically to 50%. Conclusions: Researchers and students may take advantage of this iterative process for selecting studies when conducting SLRs to reduce bias in the interpretation of inclusion and exclusion criteria. It is especially useful for research with few resources.