论文标题
在分析功能的平均径向集成性空间中的集成运算符
Integration operators in average radial integrability spaces of analytic functions
论文作者
论文摘要
在本文中,我们表征了集成运算符的界限,紧凑性和弱的紧凑性\ begin {align*} t_g(f)(z)= \ int_ {0}^{z}^{z} f(w)g'(w)g'(w)\ dw \ dw \ dw \ dw \ dw \ dw \ dw \ end eend {align*}在平均radial集成能力semptigation pace $ rm(q)上。为了这些目的,我们开发了不同的工具,例如对$ rm(p,0)$的双重描述,并使用功能的导数(我们称之为Littlewood-Paley型不平等的结果)对这些空间的规范进行了估计。
In this paper we characterize the boundedness, compactness, and weak compactness of the integration operators \begin{align*} T_g (f)(z)=\int_{0}^{z} f(w)g'(w)\ dw \end{align*} acting on the average radial integrability spaces $RM(p,q)$. For these purposes, we develop different tools such as a description of the bidual of $RM(p,0)$ and estimates of the norm of these spaces using the derivative of the functions, a family of results that we call Littlewood-Paley type inequalities.