论文标题

霍夫史塔特模型的非阿布尔概括:自旋 - 轨耦合蝴蝶对

Non-Abelian Generalizations of the Hofstadter model: Spin-orbit-coupled Butterfly Pairs

论文作者

Yang, Yi, Zhen, Bo, Joannopoulos, John D., Soljačić, Marin

论文摘要

霍夫史塔特模型以其分形蝴蝶光谱而闻名,它描述了垂直磁场下的二维电子,从而产生了整数量子厅效应。受到最新实验的非亚伯仪表场的真实空间构建块的启发[Science,365,1021(2019)],我们介绍了Hofstadter模型的两个非亚伯利亚概括。每个模型都描述了两对旋转轨道耦合的Hofstadter蝴蝶。与可以在Landau和对称测量值中进行等效研究的原始霍夫史塔特模型相反,由于仪表场的非交换性,相应的非亚洲概括表现出不同的光谱。我们从其任意循环操作员的换算性中得出了两个模型的真实(必要和充分)的非亚伯利亚条件。在零能量下,模型是无间隙的,宿主的Weyl和Dirac点受内部和晶体对称性保护。同样出现了双重(8倍),三倍(12倍)和四杆(16倍)狄拉克点,尤其是在非亚伯利亚电位相等的跳跃阶段。在其他填充物中,模型的间隙阶段产生了$ \ mathbb {z} _2 $拓扑绝缘子。我们通过讨论光子平台中模型实验实现的可能方案来结束。

The Hofstadter model, well-known for its fractal butterfly spectrum, describes two-dimensional electrons under a perpendicular magnetic field, which gives rise to the integer quantum hall effect. Inspired by the real-space building blocks of non-Abelian gauge fields from a recent experiment [Science, 365, 1021 (2019)], we introduce and theoretically study two non-Abelian generalizations of the Hofstadter model. Each model describes two pairs of Hofstadter butterflies that are spin-orbit coupled. In contrast to the original Hofstadter model that can be equivalently studied in the Landau and symmetric gauges, the corresponding non-Abelian generalizations exhibit distinct spectra due to the non-commutativity of the gauge fields. We derive the genuine (necessary and sufficient) non-Abelian condition for the two models from the commutativity of their arbitrary loop operators. At zero energy, the models are gapless and host Weyl and Dirac points protected by internal and crystalline symmetries. Double (8-fold), triple (12-fold), and quadrupole (16-fold) Dirac points also emerge, especially under equal hopping phases of the non-Abelian potentials. At other fillings, the gapped phases of the models give rise to $\mathbb{Z}_2$ topological insulators. We conclude by discussing possible schemes for the experimental realizations of the models in photonic platforms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源