论文标题

极化图像增强

Polarimetric image augmentation

论文作者

Blanchon, Marc, Morel, Olivier, Meriaudeau, Fabrice, Seulin, Ralph, Sidibé, Désiré

论文摘要

城市环境中的机器人技术应用受到障碍的障碍,这些障碍会妨碍自动导航。另一方面,这些反射是高度两极化的,可以成功使用这些额外的信息来分割镜面区域。在本质上,极化光是通过反射或散射获得的。深度卷积神经网络(DCNN)显示出极好的分割结果,但需要大量数据才能达到最佳性能。通常使用增强方法克服数据缺乏。但是,与RGB图像不同,极化图像不仅是标量(强度)图像,并且不能直接应用标准增强技术。我们建议通过应用于极化数据的正规化扩展程序来增强深度学习模型,以便在具有挑战性的条件下更有效地表征场景。随后,我们在现实世界数据的非增强培训程序和正规培训程序之间平均观察到了18.1%的IOU。

Robotics applications in urban environments are subject to obstacles that exhibit specular reflections hampering autonomous navigation. On the other hand, these reflections are highly polarized and this extra information can successfully be used to segment the specular areas. In nature, polarized light is obtained by reflection or scattering. Deep Convolutional Neural Networks (DCNNs) have shown excellent segmentation results, but require a significant amount of data to achieve best performances. The lack of data is usually overcomed by using augmentation methods. However, unlike RGB images, polarization images are not only scalar (intensity) images and standard augmentation techniques cannot be applied straightforwardly. We propose to enhance deep learning models through a regularized augmentation procedure applied to polarimetric data in order to characterize scenes more effectively under challenging conditions. We subsequently observe an average of 18.1% improvement in IoU between non augmented and regularized training procedures on real world data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源