论文标题

一种计算高效的沙盒算法,用于具有数千万节点的大规模复杂网络的多重分析

A computationally-efficient sandbox algorithm for multifractal analysis of large-scale complex networks with tens of millions of nodes

论文作者

Ding, Yuemin, Liu, Jin-Long, Li, Xiaohui, Tian, Yu-Chu, Yu, Zu-Guo

论文摘要

多重分析(MFA)是系统地描述理论和实验分形模式的空间异质性的有用工具。用于分形分析的广泛使用的方法之一是盒覆盖。众所周知,它是NP-HARD。更严重的是,与分形分析算法相比,MFA算法具有更高的计算复杂性。在复杂网络的各种MFA算法中,Sandbox MFA算法具有最佳的计算效率。但是,现有的沙盒算法在计算上仍然很昂贵。对于具有数千万节点的大规模网络实施MFA变得具有挑战性。还不清楚MFA结果是否可以通过理论网络的大小增加来提高结果。为了应对这些挑战,本文针对大型网络的MFA提出了一种计算效率的沙盒算法(CESA)。我们的CESA采用广度优先搜索(BFS)技术来直接搜索中心节点每一层的邻居节点,然后检索所需的信息。我们的CESA的输入是稀疏数据结构,该数据结构源自压缩稀疏行(CSR)格式,旨在压缩大规模网络的邻接矩阵。理论分析表明,CESA降低了现有的沙盒算法的时间复杂性,从立方体到二次,也提高了从二次到线性的空间复杂性。对典型的复杂网络进行MFA实验以验证我们的CESA。最后,我们的CESA应用于一些大规模的典型现实世界网络。

Multifractal analysis (MFA) is a useful tool to systematically describe the spatial heterogeneity of both theoretical and experimental fractal patterns. One of the widely used methods for fractal analysis is box-covering. It is known to be NP-hard. More severely, in comparison with fractal analysis algorithms, MFA algorithms have much higher computational complexity. Among various MFA algorithms for complex networks, the sandbox MFA algorithm behaves with the best computational efficiency. However, the existing sandbox algorithm is still computationally expensive. It becomes challenging to implement the MFA for large-scale networks with tens of millions of nodes. It is also not clear whether or not MFA results can be improved by a largely increased size of a theoretical network. To tackle these challenges, a computationally-efficient sandbox algorithm (CESA) is presented in this paper for MFA of large-scale networks. Our CESA employs the breadth-first search (BFS) technique to directly search the neighbor nodes of each layer of center nodes, and then to retrieve the required information. Our CESA's input is a sparse data structure derived from the compressed sparse row (CSR) format designed for compressed storage of the adjacency matrix of large-scale network. A theoretical analysis reveals that the CESA reduces the time complexity of the existing sandbox algorithm from cubic to quadratic, and also improves the space complexity from quadratic to linear. MFA experiments are performed for typical complex networks to verify our CESA. Finally, our CESA is applied to a few typical real-world networks of large scale.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源