论文标题
在平均时间对称ZRC和RLC二聚体中观察赫米尔尼和非弱点可糖化点以及异常环
Observation of Hermitian and Non-Hermitian Diabolic Points and Exceptional Rings in Parity-Time symmetric ZRC and RLC Dimers
论文作者
论文摘要
我们介绍了遗传学和非富米电子二聚体中的可分化点的观察。为PT对称ZRC和RLC二聚体建立了牢不可破的平价对称性的状态。我们展示了如何在频谱中出现非热堕落点,以及如何保护它们免受遗传扰动的影响。当在设置中添加非冬宫的扰动时,非铁质分解点(NHDP)变成了异常点的环,如某些狄拉克和Weyl半含量。 LTSpice中这些特定点围绕这些特定点的振荡的一些实验模拟完全符合分析和数值的预测。这项工作为在室温下进行拓扑电路开设了一条金道,以调查拓扑电路。
We present the observation of diabolic points in Hermitian and non-Hermitian electronics dimers. The condition of unbreakable Parity-time symmetry is established for both PT-symmetric ZRC and RLC dimers. We show how appears non-Hermitian degeneracy points in the spectrum and how they are protected against a Hermitian perturbation. When a non- Hermitian perturbation is added in the setup, the non-Hermitian diabolic point (NHDP) turns into a ring of exceptional points as in some Dirac and Weyl semimetals. Some experimental simulations of oscillations around these particular points in LTspice are in perfect accordance with the one predicted analytically and numerically. This work opens a gold road for investigations on topological electrical circuits for robust transport of information at room temperature.