论文标题

具有物理信息神经网络的血栓材料特性的非侵入性推断

Non-invasive Inference of Thrombus Material Properties with Physics-informed Neural Networks

论文作者

Yin, Minglang, Zheng, Xiaoning, Humphrey, Jay D., Karniadakis, George Em

论文摘要

我们使用物理信息的神经网络(PINN)使用合成数据来推断生物材料的性质。特别是,我们成功地应用了PINN来推断血栓变形数据的血栓渗透性和粘弹性模量,这可以通过四阶Cahn-Hilliard和Navier-Stokes方程来描述。在PINN中,部分微分方程被编码到损耗函数中,其中可以通过自动分化(AD)获得部分导数。此外,为了应对使用AD计算Cahn-Hilliard方程中的第四阶导数的挑战,我们引入了一个辅助网络以及主神经网络,以近似能量潜在项的第二个衍生。我们的模型可以通过仅在所有数据(即相处和压力测量值)之间使用部分信息进行训练,可以预测未知参数以及速度,压力和变形梯度场,并且在时空领域内的采样中也非常灵活。我们通过频谱/\ textIt {hp}元素方法(SEM)从数值解验证我们的模型,并通过嘈杂的测量训练它来证明其鲁棒性。我们的结果表明,PINN可以准确地使用嘈杂的合成数据推断材料特性,因此它们具有从实验性多模式和多效率数据中推断出这些特性的巨大潜力。

We employ physics-informed neural networks (PINNs) to infer properties of biological materials using synthetic data. In particular, we successfully apply PINNs on inferring the thrombus permeability and visco-elastic modulus from thrombus deformation data, which can be described by the fourth-order Cahn-Hilliard and Navier-Stokes Equations. In PINNs, the partial differential equations are encoded into the loss function, where partial derivatives can be obtained through automatic differentiation (AD). In addition, to tackling the challenge of calculating the fourth-order derivative in the Cahn-Hilliard equation with AD, we introduce an auxiliary network along with the main neural network to approximate the second-derivative of the energy potential term. Our model can predict simultaneously unknown parameters and velocity, pressure, and deformation gradient fields by merely training with partial information among all data, i.e., phase-field and pressure measurements, and is also highly flexible in sampling within the spatio-temporal domain for data acquisition. We validate our model by numerical solutions from the spectral/\textit{hp} element method (SEM) and demonstrate its robustness by training it with noisy measurements. Our results show that PINNs can accurately infer the material properties with noisy synthetic data, and thus they have great potential for inferring these properties from experimental multi-modality and multi-fidelity data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源