论文标题

广义纠缠,指控和互换

Generalized Entanglement, Charges and Intertwiners

论文作者

Furuya, Keiichiro, Lashkari, Nima, Ouseph, Shoy

论文摘要

具有内部对称性的量子系统中的纠缠理论很丰富,因为在纠缠表面上自发地创建了纠缠的电荷/反电荷颗粒。我们将这些对创建运营商称为双本地互换者,因为他们在对称群体的表示理论中所扮演的角色。我们将纠缠熵的广义度量定义为在限制到可观察到的子空间的信息的量度。我们认为,在有指控的情况下,正确的纠缠措施是两个术语的总和。一个测量电荷中性运算符的纠缠,另一个测量双本地互换器的贡献。我们的表达在晶格模型以及量子场理论(QFT)中明确定义。我们使用tomita-takesaki模块化理论来突出QFT和晶格模型之间的差异,并讨论QFT代数的扩展,从而导致带电模式的分解。

The entanglement theory in quantum systems with internal symmetries is rich due to the spontaneous creation of entangled pairs of charge/anti-charge particles at the entangling surface. We call these pair creation operators the bi-local intertwiners because of the role they play in the representation theory of the symmetry group. We define a generalized measure of entanglement entropy as a measure of information erased under restriction to a subspace of observables. We argue that the correct entanglement measure in the presence of charges is the sum of two terms; one measuring the entanglement of charge-neutral operators, and the other measuring the contribution of the bi-local intertwiners. Our expression is unambiguously defined in lattice models as well in quantum field theory (QFT). We use the Tomita-Takesaki modular theory to highlight the differences between QFT and lattice models, and discuss an extension of the algebra of QFT that leads to a factorization of the charged modes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源