论文标题

不稳定性,计算效率和统计准确性

Instability, Computational Efficiency and Statistical Accuracy

论文作者

Ho, Nhat, Khamaru, Koulik, Dwivedi, Raaz, Wainwright, Martin J., Jordan, Michael I., Yu, Bin

论文摘要

许多统计估计器被定义为数据依赖性运算符的固定点,其估计器基于最小化成本函数为重要的特殊情况。此类估计器的限制性能取决于人口级运算符的性能,在无限的许多样本的理想情况下。我们开发一个通用框架,该框架基于算法水平的算法的确定性收敛速率与基于$ n $样本的经验对象时的算法的确定性收敛速率之间的相互作用以及其稳定性的程度。使用此框架,我们分析了稳定形式的梯度下降和一些高阶和不稳定算法,包括牛顿的方法及其立方体调节变体以及EM算法。我们将一般结果的应用提供给几种具体的模型类别,包括高斯混合物估计,非线性回归模型和信息丰富的无响应模型。我们展示了不稳定算法可以达到与稳定算法相同的统计准确性,以指数较少的步骤 - 即,迭代次数从多项式减少到样本尺寸$ n $中的迭代次数。

Many statistical estimators are defined as the fixed point of a data-dependent operator, with estimators based on minimizing a cost function being an important special case. The limiting performance of such estimators depends on the properties of the population-level operator in the idealized limit of infinitely many samples. We develop a general framework that yields bounds on statistical accuracy based on the interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (in)stability when applied to an empirical object based on $n$ samples. Using this framework, we analyze both stable forms of gradient descent and some higher-order and unstable algorithms, including Newton's method and its cubic-regularized variant, as well as the EM algorithm. We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models. We exhibit cases in which an unstable algorithm can achieve the same statistical accuracy as a stable algorithm in exponentially fewer steps -- namely, with the number of iterations being reduced from polynomial to logarithmic in sample size $n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源