论文标题
关于晶格中最短独立媒介问题的混凝土硬度的注释
A Note on the Concrete Hardness of the Shortest Independent Vectors Problem in Lattices
论文作者
论文摘要
Blömer和Seifert表明,$ \ Mathsf {sivp} _2 $是NP-HARD,通过从$ \ Mathsf {cvp} _2 $减少到$ \ Mathsf {sivp} _2 _2 _2 $对于$ \ MATHSF {cvp {cvp {cvp {cvp {cvp {cvp {cvp {为了在$ \ mathsf {Cvp} $实例上正式定义此要求,我们引入了一个新的计算问题,称为gap最接近的矢量问题,带有有限的minima。我们调整了Blömer和Seifert的证明,以显示差距最接近的矢量问题,其中有限的最小值为$ \ Mathsf {sivp} $,对于任何$ \ ell_p $ norm,对于某些常数近似因子来说,大于$ 1 $。 在最近的结果中,Bennett,Golovnev和Stephens-Davidowitz表明,在Gap-eth下,没有$ 2^{o(n)} $ - 近似于$ \ Mathsf {cvp} _p $的时间算法,以至于任何常数因子$γ\ geq 1 $ for $γ\ geq 1 $ 1 \ effty ftty fefty feft fefty fef。我们观察到,他们的论文的减少可以看作是从$ \ mathsf {gap3sat} $减少到有界minima的差距最接近的向量问题。这与上述减排一起意味着,在Gap-Eth下,没有$ 2^{o(n)} $ - 时间算法,用于近似于$ \ Mathsf {sivp} _p $ for任何常数因子$γ\ geq 1 $,用于任何$ 1 \ leq p \ leq p \ leq leq \ eftty $。
Blömer and Seifert showed that $\mathsf{SIVP}_2$ is NP-hard to approximate by giving a reduction from $\mathsf{CVP}_2$ to $\mathsf{SIVP}_2$ for constant approximation factors as long as the $\mathsf{CVP}$ instance has a certain property. In order to formally define this requirement on the $\mathsf{CVP}$ instance, we introduce a new computational problem called the Gap Closest Vector Problem with Bounded Minima. We adapt the proof of Blömer and Seifert to show a reduction from the Gap Closest Vector Problem with Bounded Minima to $\mathsf{SIVP}$ for any $\ell_p$ norm for some constant approximation factor greater than $1$. In a recent result, Bennett, Golovnev and Stephens-Davidowitz showed that under Gap-ETH, there is no $2^{o(n)}$-time algorithm for approximating $\mathsf{CVP}_p$ up to some constant factor $γ\geq 1$ for any $1 \leq p \leq \infty$. We observe that the reduction in their paper can be viewed as a reduction from $\mathsf{Gap3SAT}$ to the Gap Closest Vector Problem with Bounded Minima. This, together with the above mentioned reduction, implies that, under Gap-ETH, there is no $2^{o(n)}$-time algorithm for approximating $\mathsf{SIVP}_p$ up to some constant factor $γ\geq 1$ for any $1 \leq p \leq \infty$.