论文标题
控制网络合奏
Controlling network ensembles
论文作者
论文摘要
最佳控制领域通常需要对一个人希望控制的系统的完美知识,这是生物系统或网络的不切实际假设,通常受高水平的不确定性影响。在这里,我们研究了网络集合的最小能量控制,这可能会占据有限数量的可能实现之一。我们确保派生的控制器可以使用可调的精度执行所需的控制,并研究控制能量和整体控制成本量表如何通过可能的实现数量。我们在感兴趣的三个示例中验证了该理论:一个具有不确定边缘权重和自循环权重的单向链网络,一个网络,其中每个边缘的重量是从给定分布中汲取的,而在不确定参数的情况下,与自噬的细胞信号网络相对应的动力学网络的雅各布。我们的工作对最优性与不确定性之间的关系提供了基本的洞察力。我们的主要结果是,只要不确定性界定,与最佳控制问题解决方案相对应的最佳成本可能是有限的。
The field of optimal control typically requires the assumption of perfect knowledge of the system one desires to control, which is an unrealistic assumption for biological systems, or networks, typically affected by high levels of uncertainty. Here, we investigate the minimum energy control of network ensembles, which may take one of a finite number of possible realizations. We ensure the controller derived can perform the desired control with a tunable amount of accuracy and we study how the control energy and the overall control cost scale with the number of possible realizations. We verify the theory in three examples of interest: a unidirectional chain network with uncertain edge weights and self-loop weights, a network where each edge weight is drawn from a given distribution, and the Jacobian of the dynamics corresponding to the cell signaling network of autophagy in the presence of uncertain parameters. Our work sheds fundamental insight into the relationship between optimality and uncertainty. Our main result is that the optimal cost corresponding to the solution of the optimal control problem remains finite for possibly infinitely many network realizations as long as uncertainty is bounded.