论文标题

3D能量亚临界波方程的弱非辐射径向溶液

Weakly non-radiative radial solutions to 3D energy subcritical wave equations

论文作者

Shen, Ruipeng

论文摘要

在这项工作中,我们考虑能量亚临界3D波方程$ \ partial_t^2 u-Δu= \ pm | u | u |^{p-1} u $并讨论其(弱)非辐射解解决方案,即在外部区域中定义的解决方案$ \ \ \ {(x,x,t) \ [ \ lim_ {t \ rightarrow \ pm \ infty} \ int_ {| x |> |> | t | + r} \ left(| \ nabla u(x,x,x,t)|^2 + | u_t(x,x,t)|^2 \ right)dx = 0。 \]众所周知,对线性波方程的任何径向弱的非辐射解是$ 1/| x | $的倍数。此外,对于能量关键波方程的任何径向弱非辐射解决方案$ u $都必须具有类似的渐近行为,即$ u(x,x,t)\ simeq c/| x​​ | $当$ | x | $很大。在这项工作中,我们举例说明,径向弱的非辐射式解决方案($ 3 <p <5 $)可能具有差异的渐近行为。但是,一个径向弱的非辐射解决方案$ u $在关键的sobolev空间中具有初始数据$ \ dot {h}^{s_p} \ times \ dot \ dot {h}^{s_p-1}(s_p-1}(\ mathbb {r}^3) - | w |^{p -1} w $,以便$ u(x,t)\ equiv w(x)\ simeq c/| x​​ | $当$ | x | $很大。

In this work we consider the energy subcritical 3D wave equation $\partial_t^2 u - Δu = \pm |u|^{p-1} u$ and discuss its (weakly) non-radiative solutions, i.e. the solutions defined in an exterior region $\{(x,t): |x|>|t|+R\}$ with $R\geq 0$ satisfying \[ \lim_{t\rightarrow \pm\infty} \int_{|x|>|t|+R} \left(|\nabla u(x,t)|^2 + |u_t(x,t)|^2\right) dx = 0. \] It has been known that any radial weakly non-radiative solution to the linear wave equation is a multiple of $1/|x|$. In addition, any radial weakly non-radiative solutions $u$ to the energy critical wave equation must possess a similar asymptotic behaviour, i.e. $u(x,t)\simeq C/|x|$ when $|x|$ is large. In this work we give examples to show that radial weakly non-radiative solutions to energy subcritical equation ($3<p<5$) may possess a much different asymptotic behaviour. However, a radial weakly non-radiative solution $u$ with initial data in the critical Sobolev space $\dot{H}^{s_p}\times \dot{H}^{s_p-1}(\mathbb{R}^3)$ must coincide with a $C^2$ solution $W$ to the elliptic equation $-ΔW = -|W|^{p-1} W$ so that $u(x,t) \equiv W(x) \simeq C/|x|$ when $|x|$ is large.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源