论文标题

因果贝叶斯优化

Causal Bayesian Optimization

论文作者

Aglietti, Virginia, Lu, Xiaoyu, Paleyes, Andrei, González, Javier

论文摘要

本文研究了全球优化感兴趣的变量的问题,该变量是一种因果模型的一部分,其中可以执行一系列干预措施。这个问题在生物学,运营研究,通信以及更普遍的是,在所有目标是优化互连节点系统的输出度量标准的所有领域。我们的方法结合了因果推论,不确定性量化和顺序决策的想法。特别是,它概括了贝叶斯优化,该优化将目标函数的输入变量视为独立的,即可用的因果信息。我们展示了了解因果图如何显着提高推理最佳决策策略的推理能力,从而降低优化成本,同时避免使用次优的解决方案。我们提出了一种称为因果贝叶斯优化(CBO)的新算法。 CBO自动平衡了两个权衡:经典的探索 - 探索和新的观察干预,在将实际介入数据与通过DO-Calculus计算出的估计干预效果相结合时会出现。我们在合成环境和两个现实世界应用中证明了该方法的实际好处。

This paper studies the problem of globally optimizing a variable of interest that is part of a causal model in which a sequence of interventions can be performed. This problem arises in biology, operational research, communications and, more generally, in all fields where the goal is to optimize an output metric of a system of interconnected nodes. Our approach combines ideas from causal inference, uncertainty quantification and sequential decision making. In particular, it generalizes Bayesian optimization, which treats the input variables of the objective function as independent, to scenarios where causal information is available. We show how knowing the causal graph significantly improves the ability to reason about optimal decision making strategies decreasing the optimization cost while avoiding suboptimal solutions. We propose a new algorithm called Causal Bayesian Optimization (CBO). CBO automatically balances two trade-offs: the classical exploration-exploitation and the new observation-intervention, which emerges when combining real interventional data with the estimated intervention effects computed via do-calculus. We demonstrate the practical benefits of this method in a synthetic setting and in two real-world applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源