论文标题
长距离随机表面的拓扑作用和保形不变性
Topological effects and conformal invariance in long-range correlated random surfaces
论文作者
论文摘要
我们考虑具有负HURST指数$ H <0 $的离散随机分形表面。通过激活表面高度大于给定级别$ h $的站点,可以随机着色。激活位点的集合通常表示为偏移集。该集合的连接组件(级别簇)定义了一个单参数($ h $)的渗透模型家族,该模型在现场职业中具有远距离相关性。级别簇以有限的值$ h = h_c $渗透,并且对于$ h \ leq- \ frac {3} {4} $,预计相转换将保留在纯的(即无关)渗透的同一普遍性类别中。对于$ - \ frac {3} {4} <H <0 $,有一系列关键点,具有持续变化的指数。这些观点的普遍性类别,特别是关于水平簇的保形不变性的普遍性。通过结合保形场理论和数值方法,我们就这些阶段提供了新的见解。我们专注于连接函数,定义为两个站点属于同一级别群集的概率。在我们的模拟中,在尺寸$ m \ times n $的晶格圆环上定义了表面。我们表明,对连接函数的拓扑影响使所有关键线$ h <0 $都表现出了保形不变性。特别是,利用矩形圆环的各向异性($ m \ neq n $),我们直接测试了无纹状体应力 - 能量张量的两个成分的存在。此外,我们探测了基础共形场理论的频谱和结构常数。最后,我们观察到缩放的校正清楚地指出了从纯渗滤点到远程相关的集成性的破坏。
We consider discrete random fractal surfaces with negative Hurst exponent $H<0$. A random colouring of the lattice is provided by activating the sites at which the surface height is greater than a given level $h$. The set of activated sites is usually denoted as the excursion set. The connected components of this set, the level clusters, define a one-parameter ($H$) family of percolation models with long-range correlation in the site occupation. The level clusters percolate at a finite value $h=h_c$ and for $H\leq-\frac{3}{4}$ the phase transition is expected to remain in the same universality class of the pure (i.e. uncorrelated) percolation. For $-\frac{3}{4}<H< 0$ instead, there is a line of critical points with continously varying exponents. The universality class of these points, in particular concerning the conformal invariance of the level clusters, is poorly understood. By combining the Conformal Field Theory and the numerical approach, we provide new insights on these phases. We focus on the connectivity function, defined as the probability that two sites belong to the same level cluster. In our simulations, the surfaces are defined on a lattice torus of size $M\times N$. We show that the topological effects on the connectivity function make manifest the conformal invariance for all the critical line $H<0$. In particular, exploiting the anisotropy of the rectangular torus ($M\neq N$), we directly test the presence of the two components of the traceless stress-energy tensor. Moreover, we probe the spectrum and the structure constants of the underlying Conformal Field Theory. Finally, we observed that the corrections to the scaling clearly point out a breaking of integrability moving from the pure percolation point to the long-range correlated one.