论文标题

Autosum:实体摘要的自动化功能提取和多用户偏好模拟

AutoSUM: Automating Feature Extraction and Multi-user Preference Simulation for Entity Summarization

论文作者

Wei, Dongjun, Liu, Yaxin, Zhu, Fuqing, Zang, Liangjun, Zhou, Wei, Lu, Yijun, Hu, Songlin

论文摘要

使用思维的图形,实体描述变得非常冗长。实体摘要任务,旨在为实体生成多样化,全面和代表性的摘要,最近收到了越来越多的利益。在大多数以前的方法中,通常由手工制作的模板提取功能。然后进行功能选择和多用户偏好模拟,这取决于人类专业知识。在本文中,提出了一种称为Autosum的新型集成方法,用于自动提取和多用户偏好模拟,以克服先前方法的缺点。汽车中有两个模块:提取器和模拟器。提取器模块基于Bilstm的自动特征提取,其组合输入表示,包括单词嵌入和图形嵌入。同时,模拟器模块基于设计良好的两相注意机制(即实体相关的注意力和用户相关)自动化多用户偏好模拟。实验结果表明,Autosum在F-Measure和MAP上都在两个广泛使用的数据集(即DBPEDIA和LinkedMDB)上产生最先进的性能。

Withthegrowthofknowledgegraphs, entity descriptions are becoming extremely lengthy. Entity summarization task, aiming to generate diverse, comprehensive, and representative summaries for entities, has received increasing interest recently. In most previous methods, features are usually extracted by the handcrafted templates. Then the feature selection and multi-user preference simulation take place, depending too much on human expertise. In this paper, a novel integration method called AutoSUM is proposed for automatic feature extraction and multi-user preference simulation to overcome the drawbacks of previous methods. There are two modules in AutoSUM: extractor and simulator. The extractor module operates automatic feature extraction based on a BiLSTM with a combined input representation including word embeddings and graph embeddings. Meanwhile, the simulator module automates multi-user preference simulation based on a well-designed two-phase attention mechanism (i.e., entity-phase attention and user-phase attention). Experimental results demonstrate that AutoSUM produces state-of-the-art performance on two widely used datasets (i.e., DBpedia and LinkedMDB) in both F-measure and MAP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源