论文标题
与长期相互作用的无序接触过程中的持久性不连续性
Persistence discontinuity in disordered contact processes with long-range interactions
论文作者
论文摘要
我们研究了通过强disorder重新归一化组(SDRG)方法的结合,在远距离相互作用的无序接触过程中,局部持久性概率(稀有区域的现象学理论和数值模拟)的结合。我们发现,对于作为距离的逆力衰减的相互作用,持久性概率不仅在非活动阶段,而且在临界点中也趋于非零极限。因此,与短距离交互的触点过程不同,限制$ t \ to \ infty $中的持久性是控制参数的不连续函数。对于拉伸指数衰减的相互作用,发现持久性的限制值保持连续,类似于具有短距离相互作用的模型。
We study the local persistence probability during non-stationary time evolutions in disordered contact processes with long-range interactions by a combination of the strong-disorder renormalization group (SDRG) method, a phenomenological theory of rare regions, and numerical simulations. We find that, for interactions decaying as an inverse power of the distance, the persistence probability tends to a non-zero limit not only in the inactive phase but also in the critical point. Thus, unlike in the contact process with short-range interactions, the persistence in the limit $t\to\infty$ is a discontinuous function of the control parameter. For stretched exponentially decaying interactions, the limiting value of the persistence is found to remain continuous, similar to the model with short-range interactions.