论文标题
$ \ textit {ab intib} $晶粒边界的影响和替代缺陷对超导nb $ _3 $ sn的影响
$\textit{Ab Initio}$ Theory of the Impact from Grain Boundaries and Substitutional Defects on Superconducting Nb$_3$Sn
论文作者
论文摘要
晶界在超导nb $ _3 $ sn的应用中起关键作用:在直流应用中,晶界通过固定通量来保留材料固有的高临界电流密度,而在AC应用中,晶粒边界可以为通量进入和导致大量散射提供弱点。我们提出了第一个$ \ textit {ab intio} $研究,以使用密度功能理论来研究NB $ _3 $ sn中不同边界类型的物理。我们确定了各种方向的倾斜和晶粒边界的精力有利的选择。我们发现,没有任何点缺陷的清洁晶界将状态的Fermi级密度减少了两个倍,这种效果可以恢复到散装电子结构$ \ sim1-1.5 $ nm,从边界。我们进一步计算了锡替代缺陷的结合自由能与多个边界的结合,发现了强大的电子相互作用,该相互作用延伸至与状态密度降低相当的距离。与这种相互作用相关,我们发现了边界附近的缺陷电子熵的普遍趋势。我们探究缺陷分离对晶界电子结构的影响,并计算替代杂质对晶界附近状态状态密度的影响,发现钛和坦塔尔姆的影响很小,无论放置如何,锡,铜和niobium缺损都具有很大的影响,但仅在范围内远距离核心。最后,我们考虑所有这些效果如何影响局部超导过渡温度$ t_ \ textrm {c} $作为距边界平面距离的函数。
Grain boundaries play a critical role in applications of superconducting Nb$_3$Sn: in dc applications, grain boundaries preserve the material's inherently high critical current density by pinning flux, while in ac applications grain boundaries can provide weak points for flux entry and lead to significant dissipation. We present the first $\textit{ab initio}$ study to investigate the physics of different boundary types in Nb$_3$Sn using density functional theory. We identify an energetically favorable selection of tilt and twist grain boundaries of distinct orientations. We find that clean grain boundaries free of point defects reduce the Fermi-level density of states by a factor of two, an effect that decays back to the bulk electronic structure $\sim1-1.5$ nm from the boundary. We further calculate the binding free-energies of tin substitutional defects to multiple boundaries, finding a strong electronic interaction that extends to a distance comparable to that of the reduction of density of states. Associated with this interaction, we discover a universal trend in defect electronic entropies near a boundary. We probe the effects of defect segregation on grain boundary electronic structure and calculate the impact of substitutional impurities on the Fermi-level density of states in the vicinity of a grain boundary, finding that titanium and tantalum have little impact regardless of placement, whereas tin, copper, and niobium defects each have a significant impact but only on sites away from the boundary core. Finally, we consider how all of these effects impact the local superconducting transition temperature $T_\textrm{c}$ as a function of distance from the boundary plane.