论文标题

发电机和评论家:一种深入的增强学习方法,用于重新排行电子商务

Generator and Critic: A Deep Reinforcement Learning Approach for Slate Re-ranking in E-commerce

论文作者

Wei, Jianxiong, Zeng, Anxiang, Wu, Yueqiu, Guo, Peng, Hua, Qingsong, Cai, Qingpeng

论文摘要

与点排名相比,板岩重新排列问题考虑了项目之间的相互影响,以提高电子商务的用户满意度。先前的作品要么按端到端模型直接对项目进行排名,要么通过分数函数进行排名,该分数功能可以交易点得分和项目之间的多样性。但是,有两个主要的现有挑战尚未得到充分研究:(1)由于一个石板项目之间的复杂相互影响,对石板的评估很难; (2)即使鉴于最佳评估,搜索最佳板岩也很具有挑战性,因为动作空间呈指数较大。在本文中,我们提出了一种新颖的发电机和评论家的重新排行方法,评论家评估了板岩,而发电机则通过强化学习方法对项目进行排名。我们提出了一个完整的板岩评论家(FSC)模型,该模型考虑了真正印象深刻的项目,并避免了现有模型的印象深刻。对于发电机,为了解决大型动作空间的问题,我们提出了一种新的探索强化学习算法,称为PPO-exploration。实验结果表明,FSC模型的表现明显胜过Art Slate评估方法的状态,并且PPO探索算法的表现大大优于现有的强化学习方法。发电机和评论家方法提高了板岩效率(4%GMV和5%的订单数量)和世界上最大的电子商务网站之一的实验实验中的多样性。

The slate re-ranking problem considers the mutual influences between items to improve user satisfaction in e-commerce, compared with the point-wise ranking. Previous works either directly rank items by an end to end model, or rank items by a score function that trades-off the point-wise score and the diversity between items. However, there are two main existing challenges that are not well studied: (1) the evaluation of the slate is hard due to the complex mutual influences between items of one slate; (2) even given the optimal evaluation, searching the optimal slate is challenging as the action space is exponentially large. In this paper, we present a novel Generator and Critic slate re-ranking approach, where the Critic evaluates the slate and the Generator ranks the items by the reinforcement learning approach. We propose a Full Slate Critic (FSC) model that considers the real impressed items and avoids the impressed bias of existing models. For the Generator, to tackle the problem of large action space, we propose a new exploration reinforcement learning algorithm, called PPO-Exploration. Experimental results show that the FSC model significantly outperforms the state of the art slate evaluation methods, and the PPO-Exploration algorithm outperforms the existing reinforcement learning methods substantially. The Generator and Critic approach improves both the slate efficiency(4% gmv and 5% number of orders) and diversity in live experiments on one of the largest e-commerce websites in the world.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源