论文标题

Galaxynet:将星系和暗物质光环与深度神经网络和大量增强学习

GalaxyNet: Connecting galaxies and dark matter haloes with deep neural networks and reinforcement learning in large volumes

论文作者

Moster, Benjamin P., Naab, Thorsten, Lindström, Magnus, O'Leary, Joseph A.

论文摘要

我们介绍了新型宽和深的神经网络Galaxynet,它连接了星系和暗物质光环的特性,并使用增强学习直接对观察到的星系统计进行了训练。预测恒星质量和恒星形成速率(SFR)的最重要的光环特性是质量峰时的光环质量,生长速率和比例因子,这是由于随机森林的特征重要性分析而产生的。我们通过有监督的学习来训练不同的模型,以找到最佳的网络体系结构。然后,使用增强学习方法对Galaxynet进行训练:对于固定的重量和偏见,我们计算所有光环的星系特性,然后得出模拟统计量(恒星质量函数,宇宙和特定的SFR,淬灭的馏分和聚类)。将这些统计数据与观察结果进行比较,我们获得了模型损失,该模型损失通过粒子群优化最小化。 Galaxynet非常准确地重现了观察到的数据($χ_\ Mathrm {Red} = 1.05 $),并预测在高归一化且高质量较低的高质量时,在高红移时比经验模型更浅。我们发现,在低质量下,SFR最高的星系是卫星,尽管大多数卫星都被淬灭。瞬时转换效率的归一化随着红移的增加而增加,但在$ z \ gtrsim0.7 $上保持恒定。最后,我们使用galaxynet填充了$(5.9〜 \ mathrm {gpc})^3 $的宇宙量,并预测了BAO信号,偏见和积极和被动星系的聚集,高达$ z = 4 $,可以通过下一代Surveys和Euclid进行测试。

We present the novel wide & deep neural network GalaxyNet, which connects the properties of galaxies and dark matter haloes, and is directly trained on observed galaxy statistics using reinforcement learning. The most important halo properties to predict stellar mass and star formation rate (SFR) are halo mass, growth rate, and scale factor at the time the mass peaks, which results from a feature importance analysis with random forests. We train different models with supervised learning to find the optimal network architecture. GalaxyNet is then trained with a reinforcement learning approach: for a fixed set of weights and biases, we compute the galaxy properties for all haloes and then derive mock statistics (stellar mass functions, cosmic and specific SFRs, quenched fractions, and clustering). Comparing these statistics to observations we get the model loss, which is minimised with particle swarm optimisation. GalaxyNet reproduces the observed data very accurately ($χ_\mathrm{red}=1.05$), and predicts a stellar-to-halo mass relation with a lower normalisation and shallower low-mass slope at high redshift than empirical models. We find that at low mass, the galaxies with the highest SFRs are satellites, although most satellites are quenched. The normalisation of the instantaneous conversion efficiency increases with redshift, but stays constant above $z\gtrsim0.7$. Finally, we use GalaxyNet to populate a cosmic volume of $(5.9~\mathrm{Gpc})^3$ with galaxies and predict the BAO signal, the bias, and the clustering of active and passive galaxies up to $z=4$, which can be tested with next-generation surveys, such as LSST and Euclid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源