论文标题
反转理论 - $ \ mathbb {z} _ {4} $受保护的拓扑性手性铰链状态及其在分层抗fiferromagnets上的应用
Theory of inversion-$\mathbb{Z}_{4}$ protected topological chiral hinge states and its applications to layered antiferromagnets
论文作者
论文摘要
我们研究手性铰链状态在具有反转对称性的高阶拓扑绝缘子(HOTIS)中的位置。首先,我们通过研究表面dirac质量对表面方向的符号的依赖性来耗尽所有类型I磁性空间组中HOTIS中铰链状态的所有可能构型。特别是,在存在滑行对称性的情况下,对于特定的表面取向,表面狄拉克质量质量通过改变表面终止而变化。通过将此结果应用于分层的抗铁磁铁(AFM),我们发现具有均匀数和奇数层的情况下的铰链状态差异。在不保留反转对称性的偶数层的情况下,铰链状态的位置不是反转对称的。尽管如此,这些反转 - 对称铰链状态是由散装拓扑导致的。我们表明,它们的反转 - 对称构型是从对称性和拓扑不变的唯一确定的。
We study positions of chiral hinge states in higher-order topological insulators (HOTIs) with inversion symmetry. First, we exhaust all possible configurations of the hinge states in the HOTIs in all type-I magnetic space groups with inversion symmetry by studying dependence of the sign of the surface Dirac mass on surface orientations. In particular, in the presence of glide symmetry, for particular surface orientations, the surface Dirac mass changes sign by changing the surface terminations. By applying this result to a layered antiferromagnet (AFM), we find a difference in the hinge states between the cases with an even and odd number of layers. In the case of an even number of layers, which does not preserve inversion symmetry, positions of hinge states are not inversion symmetric. Nonetheless, these inversion-asymmetric hinge states result from the bulk topology. We show that their inversion-asymmetric configurations are uniquely determined from the symmetries and the topological invariant.