论文标题

弄皱的薄床单的碎片动力学的模型

A model for the fragmentation kinetics of crumpled thin sheets

论文作者

Andrejevic, Jovana, Lee, Lisa M., Rubinstein, Shmuel M., Rycroft, Chris H.

论文摘要

作为一个狭窄的薄板皱纹,它自发地分成了由山脊网络界定的平面。尽管这一过程存在明显的混乱,但皱巴布的统计特性表现出惊人的可重复性。实验表明,当反复压实和展开一张纸时,总折痕长度会在对数上积聚。在这里,我们通过探索弯曲和碎片过程之间的对应关系来洞悉这一意外结果。我们确定了一个物理模型,用于弄皱的床单和山脊长度分布的演变,并提出了一种由几何挫败感驱动的机制。该机制建立了一个反馈循环,其中尺寸分布在重复限制下为随后的破碎率提供了信息,从而产生了新的尺寸分布。然后,我们演示了该模型重现总折痕长度的特征对数缩放的能力,从而为观察到的现象提供了缺失的物理基础。

As a confined thin sheet crumples, it spontaneously segments into flat facets delimited by a network of ridges. Despite the apparent disorder of this process, statistical properties of crumpled sheets exhibit striking reproducibility. Experiments have shown that the total crease length accrues logarithmically when repeatedly compacting and unfolding a sheet of paper. Here, we offer insight to this unexpected result by exploring the correspondence between crumpling and fragmentation processes. We identify a physical model for the evolution of facet area and ridge length distributions of crumpled sheets, and propose a mechanism for re-fragmentation driven by geometric frustration. This mechanism establishes a feedback loop in which the facet size distribution informs the subsequent rate of fragmentation under repeated confinement, thereby producing a new size distribution. We then demonstrate the capacity of this model to reproduce the characteristic logarithmic scaling of total crease length, thereby supplying a missing physical basis for the observed phenomenon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源