论文标题
网络比较与可解释的对比网络表示学习
Network Comparison with Interpretable Contrastive Network Representation Learning
论文作者
论文摘要
通过与另一个网络进行比较,确定网络中的独特特征是一项基本的网络分析任务。例如,通过从正常和癌症组织获得的蛋白质相互作用网络,我们可以发现癌组织中独特的相互作用类型。对比度学习可以极大地帮助这种分析任务,这是一种新兴的分析方法,可以在一个数据集中相对于另一个数据集发现显着模式。但是,现有的对比学习方法不能直接应用于网络,因为它们仅用于高维数据分析。为了解决这个问题,我们介绍了一种称为对比度网络表示学习(CNRL)的新分析方法。通过整合两个机器学习方案,网络表示学习和对比度学习,CNRL可以将网络节点嵌入到一个低维表示中,该表示与另一个网络相比揭示了一个网络的独特性。在这种方法中,我们还设计了一种名为I-CNRL的方法,该方法在学习的结果中提供了可解释性,从而可以理解仅在一个网络中找到哪些特定模式。我们演示了I-CNRL在与多个网络模型和现实世界数据集进行网络比较的有效性。此外,我们通过定量和定性评估比较了I-CNRL和其他潜在的CNRL算法设计。
Identifying unique characteristics in a network through comparison with another network is an essential network analysis task. For example, with networks of protein interactions obtained from normal and cancer tissues, we can discover unique types of interactions in cancer tissues. This analysis task could be greatly assisted by contrastive learning, which is an emerging analysis approach to discover salient patterns in one dataset relative to another. However, existing contrastive learning methods cannot be directly applied to networks as they are designed only for high-dimensional data analysis. To address this problem, we introduce a new analysis approach called contrastive network representation learning (cNRL). By integrating two machine learning schemes, network representation learning and contrastive learning, cNRL enables embedding of network nodes into a low-dimensional representation that reveals the uniqueness of one network compared to another. Within this approach, we also design a method, named i-cNRL, which offers interpretability in the learned results, allowing for understanding which specific patterns are only found in one network. We demonstrate the effectiveness of i-cNRL for network comparison with multiple network models and real-world datasets. Furthermore, we compare i-cNRL and other potential cNRL algorithm designs through quantitative and qualitative evaluations.