论文标题
W43-mm1中的流出,核心和磁场方向
Outflows, cores and magnetic field orientations in W43-MM1 as seen by ALMA
论文作者
论文摘要
已经提出,在ISM中普遍存在的磁场在大规模恒星形成过程中起着重要作用。为了更好地理解其在前和原始阶段的影响,需要对极化粉尘发射的高角度分辨率观察到大量巨大的密集核心样本。为此,我们以完全极化模式的频带6(1.3毫米)中的Atacama大毫米阵列使用,以$ \ sim $ \ sim $ 2700 au的物理比例绘制巨大的原始群集W43-mm1的极化发射。我们使用这些数据来测量磁场尺度上磁场的方向。然后,我们检查了核心尺度磁场,由CO分子线发射确定的原恒星流出的相对取向以及由连续发射中2D高斯拟合确定的致密核心的主要轴的相对方向。我们发现,相对于磁场,致密芯的方向不是随机的。取而代之的是,密集的芯与相对于磁场的定向20-50 $^°$兼容。相对于磁场,流出可能是定向的50-70 $^°$,也可以相对于磁场随机定向,类似于低质量恒星形成区域的当前结果。总之,观察到的芯相对于磁场线的位置角度的比对表明,磁场与密集的材料很好地耦合。但是,20-50 $^°$优先方向与磁磁循环模型的预测相矛盾。流出方向相对于磁场的潜在相关性表明,在某些情况下,磁场足够强,可以控制从核心尺度到触发流出的间隔磁盘内部的角动量分布。
It has been proposed that the magnetic field, pervasive in the ISM, plays an important role in the process of massive star formation. To better understand its impact at the pre and protostellar stages, high-angular resolution observations of polarized dust emission toward a large sample of massive dense cores are needed. To this end, we used the Atacama Large Millimeter Array in Band 6 (1.3 mm) in full polarization mode to map the polarized emission from dust grains at a physical scale of $\sim$2700 au in the massive protocluster W43-MM1. We used these data to measure the orientation of the magnetic field at the core scale. Then, we examined the relative orientations of the core-scale magnetic field, of the protostellar outflows determined from CO molecular line emission, and of the major axis of the dense cores determined from 2D Gaussian fit in the continuum emission. We found that the orientation of the dense cores is not random with respect to the magnetic field. Instead, the dense cores are compatible with being oriented 20-50$^°$ with respect to the magnetic field. The outflows could be oriented 50-70$^°$ with respect to the magnetic field, or randomly oriented with respect to the magnetic field, similar to current results in low-mass star-forming regions. In conclusion, the observed alignment of the position angle of the cores with respect to the magnetic field lines shows that the magnetic field is well coupled with the dense material; however, the 20-50$^°$ preferential orientation contradicts the predictions of the magnetically-controlled core-collapse models. The potential correlation of the outflow directions with respect to the magnetic field suggests that, in some cases, the magnetic field is strong enough to control the angular momentum distribution from the core scale down to the inner part of the circumstellar disks where outflows are triggered.